• Title/Summary/Keyword: synthetic data

Search Result 1,420, Processing Time 0.054 seconds

Multiple imputation and synthetic data (다중대체와 재현자료 작성)

  • Kim, Joungyoun;Park, Min-Jeong
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.83-97
    • /
    • 2019
  • As society develops, the dissemination of microdata has increased to respond to diverse analytical needs of users. Analysis of microdata for policy making, academic purposes, etc. is highly desirable in terms of value creation. However, the provision of microdata, whose usefulness is guaranteed, has a risk of exposure of personal information. Several methods have been considered to ensure the protection of personal information while ensuring the usefulness of the data. One of these methods has been studied to generate and utilize synthetic data. This paper aims to understand the synthetic data by exploring methodologies and precautions related to synthetic data. To this end, we first explain muptiple imputation, Bayesian predictive model, and Bayesian bootstrap, which are basic foundations for synthetic data. And then, we link these concepts to the construction of fully/partially synthetic data. To understand the creation of synthetic data, we review a real longitudinal synthetic data example which is based on sequential regression multivariate imputation.

Synthetic data generation by probabilistic PCA (주성분 분석을 활용한 재현자료 생성)

  • Min-Jeong Park
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.279-294
    • /
    • 2023
  • It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method. The R-package synthpop are widely used for generating synthetic data by the SRMI approaches. In this paper, I suggest generating synthetic data based on the probabilistic principal component analysis (PPCA) method. Two simple data sets are used for a simulation study to compare the SRMI and PPCA approaches. Simulation results demonstrate that pairwise coefficients in synthetic data sets by PPCA can be closer to original ones than by SRMI. Furthermore, for the various data types that PPCA applications are well established, such as time series data, the PPCA approach can be extended to generate synthetic data sets.

Assessment of Drought on the Goseong-Sokcho Forest Fire in 2019 using Multi-year High-Resolution Synthetic Precipitation Data

  • Sim, Jihan;Oh, Jaiho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.379-379
    • /
    • 2020
  • The influence of drought has increased due to global warming. In addition, forest fires have occurred more frequently due to droughts and resulted in property losses and casualty. In this study, the effects of drought on Goseong-Sokcho Forest Fire in 2019 were analyzed using high-resolution synthetic precipitation data. In order to determine the severity of drought, the average, 20%tile and 80%ile values were calculated using the synthetic precipitation data of the past 30 years and compared with the current climatology. We have investigated the multi-year accumulated precipitation data to determine the persistence of drought. In Goseong-Sokcho forest fire case, the two-year cumulative synthetic precipitation data shows a similar value to the climate, but the three-year cumulative synthetic precipitation data was close to the 20%ile lines of the climate value. It may expose that the shortage of precipitation in 2017 had persisted until 2019, despite abundant precipitation during the summer in 2018. Therefore, Goseong-Sokcho forest fire might be spread more rapidly by drought which has been persisted since 2017.

  • PDF

Synthetic Image Generation for Military Vehicle Detection (군용물체탐지 연구를 위한 가상 이미지 데이터 생성)

  • Se-Yoon Oh;Hunmin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.392-399
    • /
    • 2023
  • This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.

Human Detection using Real-virtual Augmented Dataset

  • Jongmin, Lee;Yongwan, Kim;Jinsung, Choi;Ki-Hong, Kim;Daehwan, Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.98-102
    • /
    • 2023
  • This paper presents a study on how augmenting semi-synthetic image data improves the performance of human detection algorithms. In the field of object detection, securing a high-quality data set plays the most important role in training deep learning algorithms. Recently, the acquisition of real image data has become time consuming and expensive; therefore, research using synthesized data has been conducted. Synthetic data haves the advantage of being able to generate a vast amount of data and accurately label it. However, the utility of synthetic data in human detection has not yet been demonstrated. Therefore, we use You Only Look Once (YOLO), the object detection algorithm most commonly used, to experimentally analyze the effect of synthetic data augmentation on human detection performance. As a result of training YOLO using the Penn-Fudan dataset, it was shown that the YOLO network model trained on a dataset augmented with synthetic data provided high-performance results in terms of the Precision-Recall Curve and F1-Confidence Curve.

Synthetic Data Generation and Performance Analysis for Anomaly Detection (이상 탐지를 위한 합성 데이터 생성 및 성능 분석)

  • Hwang, Ju-hyo;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.19-21
    • /
    • 2022
  • Anomaly detection using self-supervised learning typically generates synthetic data to learn to classify normal and abnormal, and uses real abnormal data as test data to measure anomaly detection performance. In a study using this method to generate synthetic data similar to normal data, anomaly detection was carried out by generating synthetic data by cutting and pasting a specific patch from the original image. In this way, the degree of similarity to normal data depends on the number and size of patches, which affects anomaly detection performance. In this paper, synthetic data were generated by varying patch sizes and numbers, and then similarity and analysis with normal data were conducted using a pre-trained model, and anomaly detection performance was measured by learning the model.

  • PDF

Development of a Converter for Visualizing SEDRIS (SEDRIS 합성 환경 데이터 가시화를 위한 변환기 개발)

  • Kang, Yuna;Kim, Hyungki;Han, Soonhung;Kim, Man Kyu
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.189-199
    • /
    • 2013
  • The need for reusing synthetic environment data that are employed in the field of modeling and simulation has recently been rising. SEDRIS (Synthetic Environment Data Representation & Interchange Specification) is a standard to exchange synthetic environment data, and is the specification utilized in various military simulations of the Pentagon for representing and exchanging 3D data. SEDRIS represents environmental areas based on a data model; it can represent wind speed, wind directions, weather changes, the information of buildings, as well as terrain data. In some situations, however, the synthetic environment data stored in SEDRIS format should be converted to various visualization formats. First, because SEDRIS is a form of a super-set, it is necessary to verify whether large scale SEDRIS files are stored successfully through visualization. Second, the synthetic environment data should be visualized in some visualization programs for the simulation results to provide an immersive and realistic sense. In this study, we have developed converters for converting SEDRIS data to various visualization formats and visualized the converted results.

Game Engine Driven Synthetic Data Generation for Computer Vision-Based Construction Safety Monitoring

  • Lee, Heejae;Jeon, Jongmoo;Yang, Jaehun;Park, Chansik;Lee, Dongmin
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.893-903
    • /
    • 2022
  • Recently, computer vision (CV)-based safety monitoring (i.e., object detection) system has been widely researched in the construction industry. Sufficient and high-quality data collection is required to detect objects accurately. Such data collection is significant for detecting small objects or images from different camera angles. Although several previous studies proposed novel data augmentation and synthetic data generation approaches, it is still not thoroughly addressed (i.e., limited accuracy) in the dynamic construction work environment. In this study, we proposed a game engine-driven synthetic data generation model to enhance the accuracy of the CV-based object detection model, mainly targeting small objects. In the virtual 3D environment, we generated synthetic data to complement training images by altering the virtual camera angles. The main contribution of this paper is to confirm whether synthetic data generated in the game engine can improve the accuracy of the CV-based object detection model.

  • PDF

Synthetic Training Data Generation for Fault Detection Based on Deep Learning (딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.

A Study on Synthetic Flight Vehicle Trajectory Data Generation Using Time-series Generative Adversarial Network and Its Application to Trajectory Prediction of Flight Vehicles (시계열 생성적 적대 신경망을 이용한 비행체 궤적 합성 데이터 생성 및 비행체 궤적 예측에서의 활용에 관한 연구)

  • Park, In Hee;Lee, Chang Jin;Jung, Chanho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.766-769
    • /
    • 2021
  • In order to perform tasks such as design, control, optimization, and prediction of flight vehicle trajectories based on machine learning techniques including deep learning, a certain amount of flight vehicle trajectory data is required. However, there are cases in which it is difficult to secure more than a certain amount of flight vehicle trajectory data for various reasons. In such cases, synthetic data generation could be one way to make machine learning possible. In this paper, to explore this possibility, we generated and evaluated synthetic flight vehicle trajectory data using time-series generative adversarial neural network. In addition, various ablation studies (comparative experiments) were performed to explore the possibility of using synthetic data in the aircraft trajectory prediction task. The experimental results presented in this paper are expected to be of practical help to researchers who want to conduct research on the possibility of using synthetic data in the generation of synthetic flight vehicle trajectory data and the work related to flight vehicle trajectories.