DOI QR코드

DOI QR Code

Magnetization of a Modified Magnetic Quantum Dot

  • Received : 2016.11.07
  • Accepted : 2016.11.22
  • Published : 2016.11.30

Abstract

The energy dispersion and magnetization of a modified magnetic dot are investigated numerically. The effects of additional electrostatic potential, magnetic field non-uniformity, and Zeeman spin splitting are studied. The modified magnetic quantum dot is a magnetically formed quantum structure that has different magnetic fields inside and outside of the dot. The additional electrostatic potential prohibits the ground-state angular momentum transition in the energy dispersion as a function of the magnetic field inside the dot, and provides oscillation of the magnetization as a function of the chemical potential energy. The magnetic field non-uniformity broadens the shape of the magnetization. The Zeeman spin splitting produces additional peaks on the magnetization.

Keywords

References

  1. Bodo Huckestein and Reiner Kummel, Physics. Rev. B 38, 8215 (1988). https://doi.org/10.1103/PhysRevB.38.8215
  2. J. M. Luttinger, Phys. Rev. 121, 1251 (1961). https://doi.org/10.1103/PhysRev.121.1251
  3. G. Ihm, M. L. Falk, S. K. Noh, J. I. Lee and S. J. Lee, Phys. Rev. B 46, 15530 (1992) https://doi.org/10.1103/PhysRevB.46.15530
  4. G. Ihm, M. L. Falk, S. K. Noh, S. J. Lee, and T. W. Kim, Phys. Rev. B 46, 15270 (1992). https://doi.org/10.1103/PhysRevB.46.15270
  5. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mor. Phys. 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323
  6. M. A. McCord and D. D. Awschalom, Appl. Phys. Lett. 57, 2153 (1990). https://doi.org/10.1063/1.103923
  7. M. L. Leadbeater, S. J. Allen, Jr., F. DeRosa, J. P. Harbison, T. Sands, R. Ramesh, L. T. Florez, and V. G. Keramidas, J. Appl. Phys. 69, 4689 (1991). https://doi.org/10.1063/1.348298
  8. S. H. Park and H. -S. Sim, Phys. Rev. B 77, 075433 (2008). https://doi.org/10.1103/PhysRevB.77.075433
  9. C.M. Lee, R. C.H. Lee, W.Y. Ruan, M.Y. Chou, and A. Vyas, Solid State Commun. 156, 49 (2013) https://doi.org/10.1016/j.ssc.2012.11.024
  10. C. M. Lee and K. S. Chan, J. Appl. Phys. 114, 143708 (2013). https://doi.org/10.1063/1.4824808
  11. Dali Wang and Guojun Jin, Phys. Lett. A 373, 4082 (2009). https://doi.org/10.1016/j.physleta.2009.09.007
  12. Nammee Kim, G. Ihm, H.-S. Sim, and T. W. Kang, Phys. Rev. B 63, 235317 (2001). https://doi.org/10.1103/PhysRevB.63.235317
  13. M. A. Wilde, D. Reuter, Ch. Heyn, A. D. Wieck, and D. Grundler, Phys. Rev. B 79, 125330 (2009). https://doi.org/10.1103/PhysRevB.79.125330
  14. B. Rupprecht, S. Heedt, H. Hardtdegen, Th. Schapers, Ch. Heyn, M. A. Wilde, and D. Grundler, Phys. Rev. B 87, 035307 (2013). https://doi.org/10.1103/PhysRevB.87.035307