DOI QR코드

DOI QR Code

Effect of Ar ion Sputtering on the Surface Electronic Structure of Indium Tin Oxide

  • Lee, Hyunbok (Department of Physics, Kangwon National University) ;
  • Cho, Sang Wan (Department of Physics, Yonsei University)
  • 투고 : 2016.10.22
  • 심사 : 2016.10.26
  • 발행 : 2016.11.30

초록

We investigated the effect of Ar ion sputtering on the surface electronic structure of indium tin oxide (ITO) using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements with increasing Ar ion sputtering time. XPS measurements revealed that surface contamination on ITO was rapidly removed by Ar ion sputtering for 10 s. UPS measurements showed that the work function of ITO increased by 0.2 eV after Ar ion sputtering for 10 s. This increase in work function was attributed to the removal of surface contamination, which formed a positive interface dipole relative to the ITO substrate. However, further Ar ion sputtering did not change the work function of ITO although the surface stoichiometry of ITO did change. Therefore, removing the surface contamination is critical for increasing the work function of ITO, and Ar ion sputtering for a short time (about 10 s) can efficiently remove surface contamination.

키워드

참고문헌

  1. R. H. Friend, R.W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature, 397, 121 (1999). https://doi.org/10.1038/16393
  2. H. Spanggaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 83, 125 (2004). https://doi.org/10.1016/j.solmat.2004.02.021
  3. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater., 11, 605 (1999). https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
  4. N. Koch, ChemPhysChem, 8, 1438 (2007). https://doi.org/10.1002/cphc.200700177
  5. H. Lee, S. W. Cho, and Y. Yi, Curr. Appl. Phys., 16, 1533 (2016). https://doi.org/10.1016/j.cap.2016.09.009
  6. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R, 64, 1 (2009). https://doi.org/10.1016/j.mser.2008.12.001
  7. H. Lee, S.W. Cho, K. Han, P. E. Jeon, C.-N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett., 93, 043308 (2008). https://doi.org/10.1063/1.2965120
  8. H. Lee, E. Puodziukynaite, Y. Zhang, J. C. Stephenson, L. J. Richter, D. A. Fischer, D. M. DeLongchamp, T. Emrick, and A. L. Briseno, J. Am. Chem. Soc., 137, 540 (2015). https://doi.org/10.1021/ja512148d
  9. K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys., 87, 295 (2000). https://doi.org/10.1063/1.371859
  10. S. Y. Kim, J.-L. Lee, K.-B. Kim, and Y.-H. Tak, J. Appl. Phys., 95, 2560 (2004). https://doi.org/10.1063/1.1635995
  11. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997). https://doi.org/10.1063/1.118575
  12. K. Jung, S. Park, Y. Lee, Y. Youn, H.-I. Shin, H.-K. Kim, H. Lee, and Y. Yi, Appl. Surf. Sci., 387, 625 (2016). https://doi.org/10.1016/j.apsusc.2016.06.157
  13. S. P. Harvey, T. O. Mason, Y. Gassenbauer, R. Schafranek, and A. Klein, J. Phys. D-Appl. Phys., 39, 3959 (2006). https://doi.org/10.1088/0022-3727/39/18/006
  14. C. Korber, V. Krishnakumar, A. Klein, G. Panaccione, P. Torelli, A. Walsh, J. L. F. Da Silva, S.-H. Wei, R. G. Egdell, and D. J. Payne, Phys. Rev. B, 81, 165207 (2010). https://doi.org/10.1103/PhysRevB.81.165207
  15. P. Carreras, S. Gutmann, A. Antony, J. Bertomeu, and R. Schlaf, J. Appl. Phys., 110, 037711 (2011).
  16. L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Stossel, and J. Simmerer, Synth. Met., 111-112, 315 (2000). https://doi.org/10.1016/S0379-6779(99)00355-0