DOI QR코드

DOI QR Code

Fabrication of Potassium Ion Source and its Emission Characteristics

  • Choi, Dae Sun (Department of Physics, Kangwon National University)
  • 투고 : 2016.10.04
  • 심사 : 2016.10.24
  • 발행 : 2016.11.30

초록

In this study, we fabricated the $K^+$ ion source for the various purposes and investigated the emission characteristics. The fabricated $K^+$ ion source was painted in the tungsten filament to make filament type ion source. The RGA spectra show that the filament type $K^+$ ion source has a good out gassing character, so it can be used in the ultra-high vacuum system. The maximum $K^+$ ion current was 20 mA when filament temperature was 1410 K and filament potential was 50 V. When the filament temperature was 1070 K, the initial beam current was 50 mA and decreased only by 2% during 4 hours. The emitting energy was measured to be 2.04 eV. This low value means that the fabricated specimen is a good $K^+$ ion source. We conclude that this filament type ion source can be used in various fields, including the LEIS research.

키워드

참고문헌

  1. S. L. Koontz and M. B. Denton, International J. of Mass Spectrometry and Ion Physics, 37(2), 227 (1981). https://doi.org/10.1016/0020-7381(81)80011-3
  2. P. Cristopher Selvin and Toshihiro Fujii, Rev. Sci. Instrum. 72, 2248 (2001). https://doi.org/10.1063/1.1362439
  3. G. E. Bugrov, S. K. Kondranin, E. A. Kralkina, V. B. Pavlov, D. V. Savinov, K. V. Vavilin, and Heon-Ju Lee. Current appl. Phys. 3, 485 (2003). https://doi.org/10.1016/j.cap.2003.06.001
  4. B. S. Cho, H. J. Oh, H. S. Uhm, S. O. Kang, C. Kim, Y. Choi, and E. H. Choi, Current Appl. Phys, 11, S172 (2011). https://doi.org/10.1016/j.cap.2011.03.069
  5. H. H. Brongersma, M. Draxlerc, M. de Riddera, and P. Bauerc, Surface Science Reports 62, 63 (2007). https://doi.org/10.1016/j.surfrep.2006.12.002
  6. D. S. Choi, M. Kopczyk, A. Kayani, R. J. Smith, and G. Bozzolo, Phys. Rev. B 74, 115407 (2006). https://doi.org/10.1103/PhysRevB.74.115407
  7. S. G. J. Mathijssen, M. Kemerink, A. Sharma, M. Coelle, P.A. Bobbert, R. A. J. Janssen, and D. M. de Leeuw, Adv. Mater. 20, 975 (2008). https://doi.org/10.1002/adma.200702688
  8. D. Geobl, R. C. Moneral, D. Valdes, D. Primetzhofer, and P. Bauer, Nuclear Instruments and Methods in Physics Research B 269, 1296 (2011). https://doi.org/10.1016/j.nimb.2010.11.042
  9. Keith Niedfeldt, Emily A. Cartera, and P. Nordlander, J. Chem. Phys. 121 (8), 3751 (2004). https://doi.org/10.1063/1.1777218
  10. K. Ozawa, T. Nodaa, T. Nakanea, M. Yamazaki, K. Edamoto, and S. Otani, Surf. Sci. 433-435, 700 (1999). https://doi.org/10.1016/S0039-6028(99)00160-0
  11. A. R. Canario, A. G. Borisov, J. P. Gauyacq, and V. A. Esaulov, Phys. Rev. B 71, 121401 (2005). https://doi.org/10.1103/PhysRevB.71.121401
  12. C. E. Sosolik, J. R. Hampton, A. C. Lavery, B. H. Cooper, and J. B. Marston, Phys. Rev. Lett. 90, 013201 (2003). https://doi.org/10.1103/PhysRevLett.90.013201
  13. S. Wethekam, D. Vald'es, R. C. Monreal, and H. Winter, Phys. Rev. B 78, 033105 (2008). https://doi.org/10.1103/PhysRevB.78.033105
  14. M. Richard-Viard, C. B'enazeth, P. Benoit-Cattin, P. Cafarelli, and N. Nieuwjaer, Phys. Rev. B, 76, 045432 (2007). https://doi.org/10.1103/PhysRevB.76.045432
  15. A. Reichmuth, A. P. Graham, KG. Bullman, and W. Allison, Surf. Sci. 307-309, 34 (1994). https://doi.org/10.1016/0039-6028(94)90366-2
  16. S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall, Appl. Phys. Lett. 67 (10), 4 (1995). https://doi.org/10.1063/1.115489
  17. S. O. Kucheyeva, J. S. Williamsa, and S. J. Peartonb, Materials Science and Engineering, 33, 51 (2001). https://doi.org/10.1016/S0927-796X(01)00028-6
  18. J. Wang and L. Holmlid, Surf. Sci. 425, 81 (1999). https://doi.org/10.1016/S0039-6028(99)00187-9
  19. Xiaofeng Yu, Steiner Raaen, Appl. Surf. Sci. 270, 364 (2013). https://doi.org/10.1016/j.apsusc.2013.01.031
  20. C. A. Howard, M. P. M. Dean, and F. Withers, Phys. Rev. B. 84, 241404(R) (2011). https://doi.org/10.1103/PhysRevB.84.241404
  21. W. W. Pillars, Donard R. Peacor, American Mineralogist, 58, 681 (1973).
  22. H. Bohm, Phys. Stat Solidi. A30, 581 (1975)
  23. U. V. Alpen, H. Schulz, G. H. Talet, H Boum, Solid. State. Commun. 23, 911 (1997).
  24. B. Renker, H. Bernotat, G. Heger, and N. Lehner, W Press, Solid State Ionics 9&10, 1341 (1984).
  25. F. H Gillery, E. A. Bush, and E. A. J. Am. Ceram. Soc. (1952), 42, 175.
  26. R. G. Lerner and G. L. Trigg, Encyclopedia Physics, 2nd ed. (Vch Publishers, Inc. New York, 1990), p. 1251
  27. A.Yutani, A. Kobayashi, and A. Kinbara Applied Surf. Sci., 70/7, 7371 (1993). https://doi.org/10.1016/0169-4332(93)90612-F

피인용 문헌

  1. -eucryptite ceramics prepared by spark plasma sintering vol.27, pp.9, 2018, https://doi.org/10.1088/1674-1056/27/9/096501