Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.6.116

Fabrication of Potassium Ion Source and its Emission Characteristics  

Choi, Dae Sun (Department of Physics, Kangwon National University)
Publication Information
Applied Science and Convergence Technology / v.25, no.6, 2016 , pp. 116-119 More about this Journal
Abstract
In this study, we fabricated the $K^+$ ion source for the various purposes and investigated the emission characteristics. The fabricated $K^+$ ion source was painted in the tungsten filament to make filament type ion source. The RGA spectra show that the filament type $K^+$ ion source has a good out gassing character, so it can be used in the ultra-high vacuum system. The maximum $K^+$ ion current was 20 mA when filament temperature was 1410 K and filament potential was 50 V. When the filament temperature was 1070 K, the initial beam current was 50 mA and decreased only by 2% during 4 hours. The emitting energy was measured to be 2.04 eV. This low value means that the fabricated specimen is a good $K^+$ ion source. We conclude that this filament type ion source can be used in various fields, including the LEIS research.
Keywords
$K^+$ ion source; RGA; Filament type; LE IS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Bohm, Phys. Stat Solidi. A30, 581 (1975)
2 B. Renker, H. Bernotat, G. Heger, and N. Lehner, W Press, Solid State Ionics 9&10, 1341 (1984).
3 F. H Gillery, E. A. Bush, and E. A. J. Am. Ceram. Soc. (1952), 42, 175.
4 R. G. Lerner and G. L. Trigg, Encyclopedia Physics, 2nd ed. (Vch Publishers, Inc. New York, 1990), p. 1251
5 A.Yutani, A. Kobayashi, and A. Kinbara Applied Surf. Sci., 70/7, 7371 (1993).   DOI
6 U. V. Alpen, H. Schulz, G. H. Talet, H Boum, Solid. State. Commun. 23, 911 (1997).
7 S. L. Koontz and M. B. Denton, International J. of Mass Spectrometry and Ion Physics, 37(2), 227 (1981).   DOI
8 P. Cristopher Selvin and Toshihiro Fujii, Rev. Sci. Instrum. 72, 2248 (2001).   DOI
9 G. E. Bugrov, S. K. Kondranin, E. A. Kralkina, V. B. Pavlov, D. V. Savinov, K. V. Vavilin, and Heon-Ju Lee. Current appl. Phys. 3, 485 (2003).   DOI
10 B. S. Cho, H. J. Oh, H. S. Uhm, S. O. Kang, C. Kim, Y. Choi, and E. H. Choi, Current Appl. Phys, 11, S172 (2011).   DOI
11 H. H. Brongersma, M. Draxlerc, M. de Riddera, and P. Bauerc, Surface Science Reports 62, 63 (2007).   DOI
12 D. S. Choi, M. Kopczyk, A. Kayani, R. J. Smith, and G. Bozzolo, Phys. Rev. B 74, 115407 (2006).   DOI
13 S. G. J. Mathijssen, M. Kemerink, A. Sharma, M. Coelle, P.A. Bobbert, R. A. J. Janssen, and D. M. de Leeuw, Adv. Mater. 20, 975 (2008).   DOI
14 A. R. Canario, A. G. Borisov, J. P. Gauyacq, and V. A. Esaulov, Phys. Rev. B 71, 121401 (2005).   DOI
15 D. Geobl, R. C. Moneral, D. Valdes, D. Primetzhofer, and P. Bauer, Nuclear Instruments and Methods in Physics Research B 269, 1296 (2011).   DOI
16 Keith Niedfeldt, Emily A. Cartera, and P. Nordlander, J. Chem. Phys. 121 (8), 3751 (2004).   DOI
17 K. Ozawa, T. Nodaa, T. Nakanea, M. Yamazaki, K. Edamoto, and S. Otani, Surf. Sci. 433-435, 700 (1999).   DOI
18 C. E. Sosolik, J. R. Hampton, A. C. Lavery, B. H. Cooper, and J. B. Marston, Phys. Rev. Lett. 90, 013201 (2003).   DOI
19 S. Wethekam, D. Vald'es, R. C. Monreal, and H. Winter, Phys. Rev. B 78, 033105 (2008).   DOI
20 M. Richard-Viard, C. B'enazeth, P. Benoit-Cattin, P. Cafarelli, and N. Nieuwjaer, Phys. Rev. B, 76, 045432 (2007).   DOI
21 A. Reichmuth, A. P. Graham, KG. Bullman, and W. Allison, Surf. Sci. 307-309, 34 (1994).   DOI
22 S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall, Appl. Phys. Lett. 67 (10), 4 (1995).   DOI
23 S. O. Kucheyeva, J. S. Williamsa, and S. J. Peartonb, Materials Science and Engineering, 33, 51 (2001).   DOI
24 J. Wang and L. Holmlid, Surf. Sci. 425, 81 (1999).   DOI
25 Xiaofeng Yu, Steiner Raaen, Appl. Surf. Sci. 270, 364 (2013).   DOI
26 C. A. Howard, M. P. M. Dean, and F. Withers, Phys. Rev. B. 84, 241404(R) (2011).   DOI
27 W. W. Pillars, Donard R. Peacor, American Mineralogist, 58, 681 (1973).