DOI QR코드

DOI QR Code

Control Strategy for Modifiable Bipedal Walking on Unknown Uneven Terrain

  • Lee, Woong-Ki (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Chwa, Dongkyoung (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Hong, Young-Dae (Dept. of Electrical and Computer Engineering, Ajou University)
  • Received : 2015.03.02
  • Accepted : 2016.05.02
  • Published : 2016.11.01

Abstract

Previous walking pattern generation methods could generate walking patterns that allow only straight walking on flat and uneven terrain. They were unable to generate modifiable walking patterns whereby the sagittal and lateral step lengths and walking direction can be changed at every footstep. This paper proposes a novel walking pattern generation method to realize modifiable walking of humanoid robots on unknown uneven terrain. The proposed method employs a walking pattern generator based on the 3-D linear inverted pendulum model (LIPM), which enables a humanoid robot to vary its walking patterns at every footstep. A control strategy for walking on unknown uneven terrain is proposed. Virtual spring-damper (VSD) models are used to compensate for the disturbances that occur between the robot and the terrain when the robot walks on uneven terrain with unknown height. In addition, methods for generating the foot and vertical center of mass (COM) of the 3-D LIPM trajectories are developed to realize stable walking on unknown uneven terrain. The proposed method is implemented on a small-sized humanoid robot platform, DARwIn-OP and its effectiveness is demonstrated experimentally.

Keywords

References

  1. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, "A realtime pattern generator for biped walking," in Proc. IEEE Int. Conf. Robot. Autom., 2002, vol. 1, pp. 31-37.
  2. T. Aoyama, Y. Hasegawa, K. Sekiyama, and T. Fukuda, "Stabilizing and direction control of efficient 3-D biped walking based on PDAC," IEEE/ASME Trans. Mechatron., vol. 14, no. 6, pp. 712-718, Dec. 2009. https://doi.org/10.1109/TMECH.2009.2032777
  3. K. Harada, S. Hattori, H. Hirukawa, M. Morisawa, S. Kajita, and E. Yoshida, "Two-stage time-parametrized gait planning for humanoid robots," IEEE/ASME Trans. Mechatron., vol. 15, no. 5, pp. 694-703, Oct. 2010. https://doi.org/10.1109/TMECH.2009.2032180
  4. Y.-D. Hong, B.-J. Lee, and J.-H. Kim, "Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots," IEEE/ASME Trans. Mechatron., vol. 16, no. 4, pp. 783-789, Aug. 2011. https://doi.org/10.1109/TMECH.2010.2089530
  5. Y. -D. Hong, C. -S. Park, and J. -H. Kim, "Stable bipedal walking with a vertical center of mass motion by an evolutionary optimized central pattern gen-erator," IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2246-2355, May 2014.
  6. S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, "Biped walking pattern generator allowing auxiliary ZMP control," in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2006, pp. 2993-2999.
  7. T. Takubo, Y. Imada, K. Ohara, Y. Mae, and T. Arai, Rough terrain walking for bipedal robot by using ZMP criteria map," in Proc. IEEE Int. Conf. Robot. Autom., 2009, pp. 788-793.
  8. H. Hirukawa, S. Hattori, S. Kajita, K. Harada, K. Kaneko, F. Kanehiro, M. Morisawa, and S. Nakaoka, "A pattern generator of humanoid robots walking on a rough terrain," in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 2181-2187.
  9. Y. Zheng, M. C. Lin, D. Manocha, A. H. Adiwahono, and C.-M. Chew, "A walking pattern generator for biped robots on uneven terrains," in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2010, pp. 4483-4488.
  10. Q. Huang and Y. Nakamura, "Sensory reflex control for humanoid walking," IEEE Trans. Robot., vol. 21, no. 5, pp. 977-984, Oct. 2005. https://doi.org/10.1109/TRO.2005.851381
  11. K. Nishiwaki and S. Kagami, "Walking control on uneven terrain with short cycle pattern generation," in Proc. IEEE-RAS Int. Conf. Humanoid Robots, 2007, pp. 447-453.
  12. E. Ohashi, T. Sato, and K. Ohnishi, "A walking stabilization method based on environmental modes on each foot for biped robot," IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3964-3974, Oct. 2009. https://doi.org/10.1109/TIE.2009.2024098
  13. H.-J. Kang, K. Hashimoto, H. Kondo, K. Hattori, K. Nishikawa, Y. Hama, H.-O. Lim, A. Takanishi, K. Suga, and K. Kato, "Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface," in Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 5167-5172.
  14. Y.-D. Hong and J.-H. Kim, "3-D command statebased modifiable bipedal walking on uneven terrain," IEEE/ASME Trans. Mechatron., vol. 18, no. 2, pp. 657-663, Apr. 2013. https://doi.org/10.1109/TMECH.2012.2182777
  15. Y.-D. Hong, Y.-H. Kim, J.-H. Han, J.-K. Yoo, and J.-H. Kim, "Evolutionary multiobjective footstep planning for humanoid robots," IEEE Trans. Syst. Man. Cybern. C, Appl. Rev., vol. 41, no. 4, pp. 520-532, Jul. 2011. https://doi.org/10.1109/TSMCC.2010.2063700
  16. Y.-D. Hong and J.-H. Kim, "An evolutionary optimized footstep planner for the navigation of humanoid robots," Int. J. Humanoid Robot., vol. 9, no. 1, Mar. 2012.