DOI QR코드

DOI QR Code

Extractive Distillation Process for the Production of Highly Purified Ethanol from Aqueous Solution using Dimethyl Sulfoxide and Ethylene Glycol

Dimethyl Sulfoxide와 Ethylene Glycol을 이용하여 에탄올 수용액으로부터 고순도 에탄올을 생산하기 위한 추출증류공정

  • 노상균 (동양대학교 화공생명공학과)
  • Received : 2016.10.06
  • Accepted : 2016.10.28
  • Published : 2016.12.30

Abstract

In this study, comparative work has been performed between two-columns and three-columns configurations for an extractive distillation process to produce highly purified ethanol with not less than 99.7 wt% using dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as extracting agents. Optimal ethanol concentration at a concentrator top stream which minimized the total reboiler heat duties was determined for a three-columns configuration for two different solvents. For the thermodynamic model, NRTL liquid activity coefficient model was used and PRO/II with PROVISION 9.4 at Schneider electric company was utilized. DMSO was proved to be a better solvent than EG and three-columns configuration is better than two- columns configuration in the total utility consumptions since some of the liquid water contained in the feed stream was removed at a concentrator bottom liquid stream.

본 연구에서는 디메틸설폭사이드(dimethyl sulfoxide, DMSO)와 에틸렌글리콜(ethylene glycol, EG)을 이용하여 에탄올 수용액으로부터 99.7 wt% 이상의 고순도 에탄올을 생산하기 위한 추출증류공정에 대해서 2기의 증류탑 배열과 3기의 증류탑 배열 사이의 공정을 비교하였다. 두 가지 용매를 사용한 3기의 증류탑 배열에 대해서는 총 재비기의 heat duty의 합이 최소가 되는 농축기 상부에서의 에탄올의 조성을 최적화 작업을 통해서 결정하였다. 열역학 모델식으로는 NRTL 액체활동도계수 모델식을 사용하였으며 Schneider electric 사의 PRO/II with PROVISION 9.4를 사용하였다. 용매의 성능은 EG보다는 DMSO가 더 좋은 것으로 나타났으며, 전체적인 유틸리티 소모량에 있어서는 농축기 하부에서 원료 중에 포함되어 있는 액상의 물의 일부를 액상으로 제거하기 때문에 3기의 증류탑 배열이 2기의 증류탑 배열보다 더 우수한 것을 알 수 있었다.

Keywords

References

  1. Cho, J. H., Park, J. K., and Jeon, J. K., "Comparison of Threeand Two-Column Configurations in Ethanol Dehydration Using Azeotropic Distillation," J. Ind. Eng. Chem., 12(2), 206-215 (2006). https://doi.org/10.1021/ie50122a042
  2. Cho, J. H., and Jeon, J. K., "Optimization Study on the Azeotropic Distillation Process for Isopropyl Alcohol Dehydration," Korean J. Chem. Eng., 23(1), 1-7 (2006). https://doi.org/10.1007/BF02705684
  3. Cho, J. H., and Jeon, J. K., "A Study on the Optimization of Process for Ethanol Dehydration Azeotropic Distillation," Korean Chem. Eng. Res., 43(4), 474-481 (2005).
  4. Wang, C. J., Wong, D. S. H., Chien, I. L., Shih, R. F., Liu, W. T., and Tsai, C. S., "Critical Reflux, Parametric Sensitivity, and Hysteresis in Azeotropic Distillation of Isopropyl Alcohol +Water + Cyclohexane," Ind. Eng. Chem. Res., 37, 2835-2843 (1998). https://doi.org/10.1021/ie970855t
  5. Arifin, S., and Chien, I. L., "Combined Preconcentrator/Recovery Column Design for Isopropyl Alcohol Dehydration Process," Ind. Eng. Chem. Res., 46, 2535-2543 (2007). https://doi.org/10.1021/ie061446c
  6. Knight, J. R., and Doherty, M. F., "Optimal Design and Synthesis Of Homogeneous Azeotropic Distillation Sequences," Ind. Eng. Chem. Res., 28, 564-572 (1989). https://doi.org/10.1021/ie00089a011
  7. Doherty, M. F., and Malone, M. F., Conceptual Design of Distillation Systems, McGraw-Hill, New York, 189-203 (2001).
  8. Douglas, J. M., Conceptual Design of Chemical Processes, McGraw-Hill, New York, 163-215 (1988).
  9. Abu-Eishah S. I., and Luyben, W. L., "Design and Control of a Two-column Azeotropic System," Ind. Eng. Chem. Process Des. Dev., 24, 132-140 (1985). https://doi.org/10.1021/i200028a024
  10. Knapp, J. P., and Doherty, M. F., "Thermal Integration of Homogeneous Azeotropic Distillation Sequences," AIChE J., 36, 969-984 (1990). https://doi.org/10.1002/aic.690360702
  11. Abu-Eishah, S. I., and Luyben, W. L., "Design and Control of a Two-column Azeotropic System," Ind. Eng. Chem. Process Des. Dev., 24, 132-140 (1985). https://doi.org/10.1021/i200028a024
  12. Wu, X. F., Nho, J. H., Kim, D. S., and Cho, J. H., "Comparison of Energy Consumption of Two-Column Configuration and Three-Column Configuration in the Extractive Distillation Process for High Purity Refinement of Isopropyl Alcohol," Asian J. Chem., 26(16), 5223-5229 (2014).
  13. Soave, G., "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," Chem. Eng. Sci., 27, 1197-1203 (1972). https://doi.org/10.1016/0009-2509(72)80096-4
  14. Peng, D. Y., and Robinson, D. B., "A New Two-Constant Equation of State," Ind. Eng. Chem. Fundam., 15(1), 59-53 (1976). https://doi.org/10.1021/i160057a011
  15. Renon, H., and Prausnitz, J. M., "Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures," AIChE J., 14(1), 135-144 (1968). https://doi.org/10.1002/aic.690140124