DOI QR코드

DOI QR Code

A Study on Micro-Electrode Pattern of Repair Process Using Electrohydrodynamic Printing System

전기수력학 프린팅 기술을 이용한 미세전극 패턴의 리페어 공정 적용에 관한 연구

  • Yang, Young-Jin (Department of Mechatronics Engineering, Jeju National University) ;
  • Kim, Soo-Wan (Department of Mechatronics Engineering, Jeju National University) ;
  • Kim, Hyun-Bum (Department of Mechatronics Engineering, Jeju National University) ;
  • Yang, Hyung-Chan (Korea Leading Energy Management) ;
  • Lim, Jong-Hwan (Department of Mechatronics Engineering, Jeju National University) ;
  • Choi, Kyung-Hyun (Department of Mechatronics Engineering, Jeju National University)
  • 양영진 (제주대학교 메카트로닉스공학과) ;
  • 김수완 (제주대학교 메카트로닉스공학과) ;
  • 김현범 (제주대학교 메카트로닉스공학과) ;
  • 양형찬 (한국에너지종합기술(주)) ;
  • 임종환 (제주대학교 메카트로닉스공학과) ;
  • 최경현 (제주대학교 메카트로닉스공학과)
  • Received : 2016.07.12
  • Accepted : 2016.09.05
  • Published : 2016.12.30

Abstract

Recently, various research studies have been conducted and many are in progress for the suitable alternative materials for ITO based touch screen panel (TSP) due to limitations in size and flexibility. Various researches from all over the world have been attempted to fabricate the fine electrode less than $5{\mu}m$ for the rapid developing of display technology. Research is also being carried out in metal mesh methods using the existing technologies and alternative materials at commercial level. However, by using the existing technologies certain discrepancies are observed like low transparency and low yield which also results in the distortion of patterns. For repairing the damaged pattern, the conventional laser CVD technique has also been used but there are some challenges observed in CVD technique like achieving a stable fine electrode of $10{\mu}m$ or less and avoiding the formation of satellite drops. To overcome these issues, a new printing process named Electrohydrodynamic (EHD) printing, has been introduced by which $5{\mu}m$ fine patterns can be printed in one step. This EHDA printing technique has been applied to print very fine electrodes of $5{\mu}m$ or less by using conductive inks of various viscosities. This study also presents the optimized process parameters for printing $5{\mu}m$ fine electrode patterns during experiments by controlling the applied voltage and supply flow rate. The $5{\mu}m$ repair electrodes were fabricated for repairing $50{\mu}m$ shorted electrode samples.

최근 디스플레이 대형화 및 유연화로 인한 기존 ITO (indium tin oxide) 기반 TSP (touch screen panel)의 구현에 한계로 인한 대체 소재에 대한 다양한 연구가 진행 중이다. 기존 기술의 대체 소재로 메탈메쉬(Metal mesh) 방식에 대한 연구가 진행되고 상용화 수준까지 진행되었다. 그러나 시인성 및 모아레(Moire) 현상으로 인하여 $5{\mu}m$ 이하의 미세 전극 패턴이 필요하나 공정 중 패턴이 탈락하는 등의 문제로 낮은 수율의 문제가 있다. 기존의 레이저 CVD 리페어 공정에서 $10{\mu}m$ 이하의 패턴 형성의 한계, 위성액적 등의 문제로 인해 안정적인 미세전극 패턴 형성에는 어려움이 있었다. 본 연구에서는 $5{\mu}m$ 이하의 안정적인 패턴 형성을 위해서 다양한 점도에서 미세액적 토출이 가능한 전기수력학 프린팅 기술을 적용하였다. $5{\mu}m$ 이하의 안정적인 미세 전극 패턴 형성을 위해 주요 변수의 변화에 따른 최적 공정 조건을 도출하였고 최적 공정 조건을 입력하여 리페어 공정 적용 가능성을 확인하였다.

Keywords

References

  1. Cho, N. S., "Current Status of OLED Technology and Market," Polym. Sci. Technol., 24, 130-134 (2013).
  2. Kim, Y. Y., "Major Domestic and Foreign Companies Displaying Trends," Korea Display Ind. Assoc., 28, 32-36 (2013).
  3. Cheong, W. S., Hong, C. H., and Shin, J. H., "Technological and Industrial Trends on Touch Sensor," Electronics and Telecommunications Trends, 29, 32-42 (2014).
  4. Kim, K. R., "Laser Microfabrications for Next-Generation Flat Panel Display," Korean J. Mater. Res., 17, 352-357 (2007). https://doi.org/10.3740/MRSK.2007.17.7.352
  5. Lee, D. Y., Shin, Y. S., Park, S. E., Yu, T. U., and Hwang, J. H., "Electrohydrodynamic Printing of Silver Nanoparticles by Using a Focused Nanocolloid Jet," Appl. Phys. Lett., 19, 90-92 (2007).
  6. Hakiai, K., Ishida, Y., Matsuzaki, K., Baba, A., and Asano, T., "Electrostatic Droplet Ejection Using Planar Needle Inkjet Head," Japanese J. Appl. Phys., 44, 82-86 (2005). https://doi.org/10.1143/JJAP.44.82
  7. Joffre, C., Prunet Foch, B., Berthomme, S., and Cloupeau, M., "Deformation of Liquid Meniscus Under the Action of an Electric Field," J. Electrostatics, 64, 43-44 (1982).
  8. Choi, J., Lee, S., Kim, Y. J., Son, S. U., and An, K. C., "High Aspect Ratio EHD Printing with High Viscosity Ink Ejection," Nanotech., 2, 267-270, (2012).
  9. Yang, Y. J., Ko, J. B., Dang, H. Y., Kim, H. C., Choi, K. H., and Choi, K. H., "Development of Pneumatic Ink Supply System for Electrostatic Head on Meniscus Control," J. Korean Soc. Precision Eng., 29, 455-460 (2012). https://doi.org/10.7736/KSPE.2012.29.4.455
  10. Lee, S. H., Byun, D. Y., Han, S. J., Son, S. U., Kim, Y. J., and Ko, H. S., "Electrostatic Droplet Formation and Ejection of Colloid," Int. Symp. Micro-NanoMechatronics Hum. Sci., Nagoya, 249-254 (2004).
  11. Joffre, C., Prunet Foch, B., Berthomme, S., and Cloupeau, M., "Deformation of Liquid Meniscus Under the Action of an Electric Field," J. Electrostatics, 64, 43-44 (1982).
  12. Hue, P. L., "Progress and Trends in Ink-jet Printing Technology," J. Imaging Sci. Technol., 30, 49-62 (1998).
  13. Eggers, J., and Dupont, T. F., "Drop Formation in a One-Dimensional Approximation of the Navier-Stokes Equation," J. Fluid Mechanics, 262, 205-221 (1994). https://doi.org/10.1017/S0022112094000480