DOI QR코드

DOI QR Code

소음 환경에서 공간상관성을 이용한 배열이득 추정

Array gain estimated by spatial coherence in noise fields

  • 박지성 (한국해양대학교 해양공학과) ;
  • 최용화 (한국해양대학교 수중운동체특화연구센터) ;
  • 김재수 (한국해양대학교 해양공학과) ;
  • 조성호 (한국해양과학기술원) ;
  • 박정수 (국방과학연구소)
  • 투고 : 2016.10.05
  • 심사 : 2016.11.25
  • 발행 : 2016.11.30

초록

해양에서 배열센서를 사용하여 신호를 수신하는 경우 성능을 측정하는 척도로서 배열이득(Array Gain, AG)을 사용한다. 배열이득은 배열의 형상, 주파수 및 해양환경에 의한 소음의 방향성에 영향을 받는다. 본 논문에서는 배열이득을 모델링하고 예측하기 위하여 공간상관성을 이용하였으며, 해상실험을 통해서 예측모델을 검증하였다. 예측 모델에서는 임의형상의 배열 및 소음의 방향성을 고려할 수 있는 신호와 소음의 공간상관성을 사용하여 배열이득을 계산하였다. 해상실험에서는 예인음원을 이용하여 CW(Continuous Wave)를 수평배열센서로 수신하였으며, 송신신호 사이에 주변 소음을 측정하였고, 이로부터 개별센서와 배열센서의 SNR(Signal to Noise Ratio)을 계산하여 배열이득을 추정하였다. 최종적으로 실험적으로 측정한 배열이득과 예측모델을 이용한 배열이득을 비교 검증하였다.

Array Gain (AG) is a metric to measure the performance of an array of acoustic sensors. AG is affected by the configuration of array, frequency and array element spacing, and the directivity of the ambient noise. In this paper, an algorithm to calculate AG based on the spatial coherence is used, and the results are verified through sea-going experiment. The method using the spatial coherence can be used to consider the arbitrary shape of an array and directionality of ambient noise. In the sea-going experiment, the towed source was used to transmit the Continuous Wave (CW), and was received at the horizontal line array on the seabed. The ambient noise was measured between the source transmission. The experimental AG was calculated from the SNR (Signal to Noise Ratio) of single sensor and an array of sensors. Finally, the predicted AG is shown to agree with the experimental value of AG.

키워드

참고문헌

  1. R. J. Urick, Principles of Underwater Sound, 3rd edition (McGraw-Hill, Washington D. C, 1983), pp. 31-46.
  2. W. S. Burdic, Underwater Acoustic System Analysis (Prentice-Hall, New Jersey, 1984), pp. 322-360.
  3. H. Cox, "Spatial correlation in arbitrary noise fields with application to ambient sea noise," J. Acoust. Soc. Am. 54, 1289-1301, 1973. https://doi.org/10.1121/1.1914426
  4. P. W. Smith, Jr, "Spatial coherence in multipath or multimodal channels," J. Acoust. Soc. Am. 60, 1260-1266, 1976.
  5. R. S. Sloboda and M. A. Manness, "Spatial coherence in semicircular noise fields," J. Acoust. Soc. Am. 74, 305-310, 1983. https://doi.org/10.1121/1.389725
  6. M. J. Buckingham and N. M. Carbone, "Source depth and the spatial coherence of ambient noise in the ocean," J. Acoust. Soc. Am. 102, 2637-2644, 1997. https://doi.org/10.1121/1.420317
  7. E. Habets, "Generating sensor signals in isotropic noise fields," J. Acoust. Soc. Am. 122, 3464-3470, 2007. https://doi.org/10.1121/1.2799929
  8. E. Habets, "Generating nonstationary multisensor signals under a spatial coherence constraint," J. Acoust. Soc. Am. 124, 2911-2917, 2008. https://doi.org/10.1121/1.2987429
  9. S. C. Walker, "A model for spatial coherence from directive ambient noise in attenuating, dispersive medias," J. Acoust. Soc. Am. 130, EL 15-21, 2012.
  10. S. C. Walker, "A model for the spatial coherence of arbitrarily directive noise in the depth-stratified ocean," J. Acoust. Soc. Am. 131, 388-394, 2012. https://doi.org/10.1121/1.3701707
  11. S. C. Walker, "Spatial coherence and cross correlation of three-dimensional ambient noise fields in the ocean," J. Acoust. Soc. Am. 131, 1079-1086, 2012. https://doi.org/10.1121/1.3676700
  12. J. S. Park, Y. H. Choi, J. S. Kim, D. H. Kang, and S. H. Cho, "The array gain for line array in directional noise," Proceedings of KSCOE 2015 Conference 39, 2015.
  13. J. S. Park, Y. H. Choi, J. S. Kim, D. H. Kang, S. H. Cho, and J. S. Park, "Array gain in directional noise," in Proc, 30 th Underwater Acoustics Symposium, pp. 395-397, 2015.
  14. Y. H. Choi, J. S. Park, J. S. Kim, D. H. Kang, S. H. Cho, and J. S. Park, "Array gain of an array of arbitrary shape in isotropic noise," in Proc, 30 th Underwater Acoustics Symposium, pp. 36-37, 2015.

피인용 문헌

  1. Noise directionality estimated using ship tracking data in the Southern Sea of Korea vol.57, pp.7S1, 2018, https://doi.org/10.7567/JJAP.57.07LG06