DOI QR코드

DOI QR Code

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod

GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가

  • Jung, Hong-Ju (Program of Forest Biomaterials Engineering, Division of Forest Material Science & Engineering, Kangwon National University) ;
  • Song, Yo-Jin (Program of Forest Biomaterials Engineering, Division of Forest Material Science & Engineering, Kangwon National University) ;
  • Lee, In-Hwan (Program of Forest Biomaterials Engineering, Division of Forest Material Science & Engineering, Kangwon National University) ;
  • Hong, Soon-Il (Program of Forest Biomaterials Engineering, Division of Forest Material Science & Engineering, Kangwon National University)
  • 정홍주 (강원대학교 산림환경과학대학 산림응용공학부 산림바이오소재공학전공) ;
  • 송요진 (강원대학교 산림환경과학대학 산림응용공학부 산림바이오소재공학전공) ;
  • 이인환 (강원대학교 산림환경과학대학 산림응용공학부 산림바이오소재공학전공) ;
  • 홍순일 (강원대학교 산림환경과학대학 산림응용공학부 산림바이오소재공학전공)
  • Received : 2015.09.23
  • Accepted : 2015.10.30
  • Published : 2016.01.25

Abstract

The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.

구조용 집성재 라멘 접합부에 일반적으로 사용되는 접합철물을 대신하여 단판과 Glass Fiber Reinforced Plastic (GFRP)를 복합시킨 GFRP 보강적층판과 삽입 접착형 GFRP rod를 접합물로 사용하여 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가를 실시하였다. 실험결과 GFRP rod와 에폭시 접착제를 이용한 삽입 접착형 접합부는 기존의 접합철물을 이용한 실험체와 비교하여 항복내력, 종국내력, 초기강성이 각각 49%, 52%, 61% 낮게 측정되었다. 이러한 접합부는 GFRP rod와 집성재 간의 접착력이 중요한 내력 기구로 현장적용 시 문제가 발생할 수 있는 가능성이 크다고 판단된다. 반면, GFRP 보강적층판과 목재(Eucalyptus marginata)핀을 이용한 실험체는 집성재 슬릿 접합부의 단면적 손실이 큼에도 불구하고 항복내력, 종국내력, 초기강성, 소성률이 전부 3% 이내로 측정되었다. 게다가 사이클에 대한 강성변화율도 35%로 가장 낮게 측정되며 접합철물을 이용한 실험체와 거의 동등한 성능을 발휘한 것을 확인하였다.

Keywords

References

  1. Beak, H.S., Iimura, Y., Imai F. 2010. Experimental Study on the Cyclic Behavior of Moment-Resisting Timber Frames Connected by Threaded Steel Shaft and Drift Pin. Journal of the Architectural Institute of Korea Structure & Construction 26(12): 11-18.
  2. Blab, H.J., Schadle, P. 2011. Ductility aspects of reinforced and non-reinforced timber joints. Engineering Structures 33(11): 3018-3026. https://doi.org/10.1016/j.engstruct.2011.02.001
  3. Hwang, K.H., Park, J.S., & Park, M.J. 2007. Shear Performance of Post and Beam Construction by Pre-Cut Process. Journal of the Korean Wood Science and Technology 35(6): 1-12.
  4. Kasal, B., Heiduschke, A., Kadla, J., Haller, P. 2004. Laminated timber frames with composite fibre- reinforced connections. Progress in Structural Engineering and Materials 6(2): 84-93. https://doi.org/10.1002/pse.173
  5. Kasal, B., Pospisil, S., Jirovsky, I., Heiduschke, A., Drdacky, M., Haller, P. 2004. Seismic performance of laminated timber frames with fiberreinforced joints. Earthquake engineering & structural dynamics 33(5): 633-646. https://doi.org/10.1002/eqe.368
  6. Kim, S.C., Yang, I.S., Moon, Y.J. 2007. Experimental Study on the Behavior of Joints Consisting Structural Laminated Timber and H Section Steel under Cyclic Loading. Journal of the Architectural Institute of Korea Structure & Construction 23(2): 27-34.
  7. Kim, K.H., Song, Y.J., Hong, S.I. 2013. Shear Strength of Reinforced Glulam-bolt Connection by Glass Fiber Combination. Journal of the Korean Wood Science and Technology 41(1): 51-57. https://doi.org/10.5658/WOOD.2013.41.1.51
  8. Lee, I.H., Song, Y.J., Jung, H.J., Hong, S.I. 2015. Moment Resistance Performance Evaluation of Larch Glulam Joint Bonded in Glass Fiber Reinforced Plastic Rods. Journal of the Korean Wood Science and Technology 43(1): 60-67. https://doi.org/10.5658/WOOD.2015.43.1.60
  9. Madhoushi, M., Ansell, M.P. 2008. Behaviour of timber connections using glued-in GFRP rods under fatigue loading. Part II: Moment-resisting connections. Composites Part B: Engineering 39(2): 249-257. https://doi.org/10.1016/j.compositesb.2006.11.002
  10. Naoyuki, I., Wataru, K., Benitez, G.A. 2010. The developement of the rigid frame wooden house structure jointed with glued-in hardwood dowels. In 11th World Conference on Timber Engineering 2010 Conference Proceedings Vol. 1, No. S 40.
  11. Pedersen, M. 2002. Dowel type timber connection. PhD Thesis, Technical University of Denmark.
  12. Santos, C.L., de Jesus, A.M., Morais, J.J., Fontoura, B.F. 2013. An experimental comparison of strengthening solutions for dowel-type wood connections. Construction and Building Materials 46: 114-127. https://doi.org/10.1016/j.conbuildmat.2013.03.021