DOI QR코드

DOI QR Code

Combustion Characteristics of Useful Imported Woods

국내 유용 해외 목재 수종의 연소특성 평가

  • Seo, Hyun Jeong (Department of Wood Processing, Korea Forest Research Institute) ;
  • Kang, Mee Ran (Department of Wood Processing, Korea Forest Research Institute) ;
  • Park, Jung-Eun (Department of Wood Processing, Korea Forest Research Institute) ;
  • Son, Dong Won (Department of Wood Processing, Korea Forest Research Institute)
  • 서현정 (국립산림과학원 임산공학부 목재가공과) ;
  • 강미란 (국립산림과학원 임산공학부 목재가공과) ;
  • 박정은 (국립산림과학원 임산공학부 목재가공과) ;
  • 손동원 (국립산림과학원 임산공학부 목재가공과)
  • Received : 2015.11.23
  • Accepted : 2016.01.04
  • Published : 2016.01.25

Abstract

The purpose of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of imported wood. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test according to KS F ISO 5660-1 and thermogravimetric analysis (TGA). Analyzed species are five kinds of species as Merbau, Mempening, Garo Garo, Malas, and Dillenia. The heat released rate values showed the highest value of Malas as $375.52kW/m^2$, and Dillenia showed the lowest value as $133.30kW/m^2$. The data values were confirmed in the following order: Malas > Mempening > Garo Garo > Merbau > Dillenia. In case of the total heat release, it was measured in the following order: Mempening > Malas > Garo Garo > Merbau > Dillenia. The gas analysis results were that Dillenia showed the highest value of 0.034. Also, Mempening and Malas showed the lowest at 0.020 in the $CO/CO_2$. Min of mass reduction was shown as 74.79% Sargent cherry, on the other hand, Malas had a 83.52%. It showed a correlation between and of the CO and $CO_2$ generation and combustion characteristics of wood. The thermal decomposition temperature of the wood in the TGA were as follow that Merbau $348.07^{\circ}C$, Mempening $367.57^{\circ}C$, Garo Garo $350.59^{\circ}C$, Malas $352.41^{\circ}C$, Dillenia $364.33^{\circ}C$. The aim of this study is to determine the combustion properties of imported wood according to ISO 5660-1. And, based on the results of this study, we would proceed with further research for improving the fire safety of wood for construction.

본 연구는 국내에서 주로 사용되는 수입 목재 수종의 화재 안전성 평가에 대한 기초 자료를 구축하기 위하여 연소 및 열적 특성을 분석하였다. 연소 특성은 KS F ISO 5660-1 규정에 의거한 콘 칼로리미터 시험 방법으로 열방출률, 총 방출열량, 연소 가스 발생, 그리고 중량 감소를 분석하였다. 열적 안정성은 열중량 분석(Thermogravimetric analysis)을 통해 시료의 열분해 온도 및 시점을 확인하였다. 분석된 수종은 국내 유용 수입 수종으로 멀바우(Merbau), 멤페닝(Mempening), 가로가로(Garo Garo), 말라스(Malas), 그리고 딜레니아(Dillenia)로 총 5수종을 선정하여 실험을 실시하였다. 열방출률 값은 말라스 > 멤페닝 > 가로가로 > 멀바우 > 딜레니아 순으로 확인되었다. 총 방출열량을 분석한 결과, 멤페닝 > 말라스 > 가로가로 > 멀바우 > 딜레니아 순으로 측정되었다. 가스분석 결과에서는 딜레니아가 $CO/CO_2$ 비율이 최대치로 0.034로 확인되었고, 멤페닝과 말라스가 0.020으로 최소치를 나타내었다. 중량감소율의 최솟값은 딜레니아가 74.79%로 나타났으며, 말라스가 83.52%로 CO와 $CO_2$의 발생과 목재 연소의 거동과의 상관관계를 나타내었다. 수종별 열분해 온도는 멀바우 $348.07^{\circ}C$, 멤페닝 $367.57^{\circ}C$, 가로가로 $350.59^{\circ}C$, 말라스 $352.41^{\circ}C$, 딜레니아 $364.33^{\circ}C$로 확인되었다.

Keywords

References

  1. Byrne, C.E., Nagle, D.C. 1997. Carbonization of wood for advanced materials applications. Carbon 35(2): 259-266. https://doi.org/10.1016/S0008-6223(96)00136-4
  2. Chung, Y.J., Spearpoint, M. 2007. Combustion properties of native Korean wood species. International Journal on Engineering Performance- Based Fire Codes 9(3): 118-125.
  3. Chung, Y.J. 2009. Comparison of combustion properties of the Pinus regida, Castanea sativa and Zelkoa serrata. Journal of Korean Institute of Fire Science and Engineering 23(4): 73-78.
  4. Delichatsios, M., Paroz, B., Bhargava, A. 2003. Flammability properties for charring materials. Fire Safety Journal 38(3): pp. 219-228. https://doi.org/10.1016/S0379-7112(02)00080-2
  5. Eom, Y.G. 2007. Wood and engineered wood as the eco-friendly building materials. Air cleaning technology 20(2): 26-49.
  6. Fu, Y., Lu, S., Li, K., Liu, C., Cheng, X., Zhang, H. 2015. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. Journal of Power Sources 273: 216-222. https://doi.org/10.1016/j.jpowsour.2014.09.039
  7. Gao, M., Ling, B., Yang, S., Zhao, M. 2005. Flame retardance of wood treated with guanidine compouns characterized by thermal degradation behavior. Journal of Analytical and Applied Pyrolysis 73(1): 151-156. https://doi.org/10.1016/j.jaap.2005.01.006
  8. Gratkowski, M.T., Dembsey, N.A., Beyler, C.L. 2006. Radiant smoldering ignition of plywood. Fire Safety Journal 41(6): 427-443. https://doi.org/10.1016/j.firesaf.2006.03.006
  9. Guillaume, E., Marquis, D., Saragoza, L. 2014. Calibration of flow rate in cone calorimeter tests. Fire and Materials 38: 194-203. https://doi.org/10.1002/fam.2174
  10. Kim, H.S., Kim, S., Kim, H.J., Yang, H.S. 2006. Thermal properties of bio-flour-filled polyolefin composites with different compatibizing agent type and content. Thermochimica Acta 451(1-2): 181-188. https://doi.org/10.1016/j.tca.2006.09.013
  11. Kim, J., Lee, J.H., Kim, S. 2012. Estimating the fire behavior of wood flooring using a cone calorimeter. Journal of Thermal Analysis and Calorimetry 110: 677-683. https://doi.org/10.1007/s10973-011-1902-1
  12. Kim, S.H. 2004. Wood species Information. Wood Korea.
  13. KS F ISO 5660-1. 2003. Reaction to fire test - Heat release. smoke production and mass loss rate - Part 1: Heat release rate (Cone calorimeter method).
  14. Lee, B.H., Kim, H.S., Kim, S., Kim, H.J., Lee, B.W., Deng, Y., Feng, Q., Luo, J. 2011. Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter. Construction and Materials 25(7): 3044-3050. https://doi.org/10.1016/j.conbuildmat.2011.01.004
  15. Li, B. 2003. Influence of polymer additives on thermal decomposition and smoke emission of poly (vinyl chloride). Polymer Degradation and Stability 82(3): 467-476. https://doi.org/10.1016/S0141-3910(03)00201-5
  16. Lowden, L.A., Hull, T.R. 2013. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews 2(4): 1-19. https://doi.org/10.1186/2193-0414-2-1
  17. Randriamananantena, T., Razafindramisa, F.L., Ramanantsizehena, G., Bemes, A., Lacabane, C. 2009. Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere, Proceedings of the Fourth High-energy Physics International Conference, Agugust 21-28, Antananarivo, Madagascar.
  18. Seo, H.J., Kim, S., Son, D.W., Park, S.B. 2013. Review on Enhancing Flame Retardant Performance of Building Materials using Carbon Nanomaterials. Journal of the society of living environmental system Korea 20(4): 514-526.
  19. Seo, H.J., Kang, M.R., Son, D.W. 2015. Combustion Properties of Woods for Indoor Use (II). Journal of the Korean wood science and technology 43(4): 478-485. https://doi.org/10.5658/WOOD.2015.43.4.478
  20. Seo, H.J., Kim, S., Huh, W., Park, K.W., Lee, D.R., Son, Kim, Y.S. 2015. Enhancing the flameretardant performance of wood-based materials using carbon-based materials. Journal of Thermal Analysis and Calorimetry 119(3): 1-8. https://doi.org/10.1007/s10973-014-4326-x
  21. Son, D.W., Kang, S. 2014. Combustion Properties of Woods for Indoor Use (I). Journal of the Korean Wood Science and Technology 42(6): 675-681. https://doi.org/10.5658/WOOD.2014.42.6.675
  22. Son, D.W., Kang, M.R. 2015. Combustion Characteristics of Fire Retardants Treated Wood (I). Journal of the Korean wood science and technology 43(1): 96-103. https://doi.org/10.5658/WOOD.2015.43.1.96
  23. Sjostrom., E. 1993. Wood chemistry. Fundamentals and Applications. Second edition ed. San Diego: Academic press.
  24. The Information of National timber industry, KFS-2012 trends in May, Korea Forest Service (2012).
  25. White, R.H., Dietenberger, M.A. 2010. Fire safety of wood construction. In: Wood handbook-Wood as an engineering material, Centennial Edition. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  26. White, R.H., Dietenberger, M.A. 2013. Fire safety of wood construction. General Technical Report FRL-GTR-190. Chapter 18.
  27. Yang, H., Yan, R., Chen, H., Yang, H.S. 2006. Thermal properties of bio-flour-filed polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta 451(1-2): 181-188. https://doi.org/10.1016/j.tca.2006.09.013
  28. Yang, J., Roy, C. 1999. Using DTA to quantitatively determine enthalpy change over a wide temperature range by the "mass-difference baseline method". Thermochimica Acta 333(2-3): 131-140. https://doi.org/10.1016/S0040-6031(99)00106-9