DOI QR코드

DOI QR Code

낸드 플래시 기반 저장장치의 피크 전류 모델링을 이용한 전력 최적화 기법 연구

Power Optimization Method Using Peak Current Modeling for NAND Flash-based Storage Devices

  • 원삼규 (연세대학교 전기전자공학과, SK 하이닉스) ;
  • 정의영 (연세대학교 전기전자공학과)
  • Won, Samkyu (Department of Electrical and Electronic Engineering, Yonsei University, SK - Hynix Semiconductor) ;
  • Chung, Eui-Young (Department of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2015.09.14
  • 심사 : 2015.12.30
  • 발행 : 2016.01.25

초록

낸드플래시 기반 저장장치는 성능 향상을 위해 다중 채널, 다중 웨이 구조를 통해 다수의 낸드 디바이스를 병렬 동작시키고 있다. 하지만 동시 동작하는 낸드 디바이스의 수가 늘어나면서 전력 소모 문제가 가시화되었으며, 특히 디바이스 간 복수의 피크 전류가 서로 중첩되면서 높은 전력소모로 인해 데이터 신뢰성과 시스템 안정성에 큰 영향을 미치고 있다. 본 논문에서는 낸드 디바이스에서 지우기, 쓰기, 읽기 동작에 대한 전류 파형을 측정, 이를 프로파일링하여 피크 전류에 대한 정의와 모델링을 진행하였고, 나아가 다수의 낸드에서 피크 전류 중첩 확률을 계산한다. 또한 시스템 수준의 TLM 시뮬레이터를 개발하여 다양한 시뮬레이션 시나리오를 주입하여 피크 전류 중첩 현상을 분석 한다. 본 실험 결과에서는 낸드간 피크 중첩 현상을 차단할 수 있는 간단한 전력 관리 기법을 적용하여 피크 전류 중첩과 시스템 성능 간의 관계를 살펴보고 이를 통해 성능 저하 최소화를 위한 피크 중첩 비율을 제시하였다.

NAND flash based storage devices adopts multi-channel and multi-way architecture to improve performance using parallel operation of multiple NAND devices. However, multiple NAND devices consume higher current and peak power overlap problem influences on the system stability and data reliability. In this paper, current waveform is measured for erase, program and read operations, peak current and model is defined by profiling method, and estimated probability of peak current overlap among NAND devices. Also, system level TLM simulator is developed to analyze peak overlap phenomenon depending on various simulation scenario. In order to remove peak overlapping, token-ring based simple power management method is applied in the simulation experiments. The optimal peak overlap ratio is proposed to minimize performance degradation based on relationship between peak current overlapping and system performance.

키워드

참고문헌

  1. Park, S-K. "Technology Scaling Challenge and Future Prospects of DRAM and NAND Flash Memory," In Memory Workshop (IMW), 2015 IEEE International , pp. 1-4, 2015
  2. Li, Y and Quader, K.N. "NAND flash memory: Challenges and opportunities," Computer, vol. 46, no. 8, pp.23-29, 2013
  3. Takeuchi, Ken. "Novel co-design of nand flash memory and nand flash controller circuits for sub-30 nm low-power high-speed solid-state drives (ssd)," IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1227-1234, 2009. https://doi.org/10.1109/JSSC.2009.2014027
  4. HONG, G. "Analysis of peak current consumption for large-scale, parallel flash memory." In Workshop for Operating System Support for Non-Volatile RAM (NVRAMOS 2011 Spring), Jeju, Korea, April 2011.
  5. Balgeun Yoo, Youjip Won, et al. "SSD characterization: From energy consumption's perspective," in Proceedings of HotStorage, 2011.
  6. Park, Jinha, et al. "Power modeling of solid state disk for dynamic power management policy design in embedded systems," Software Technologies for Embedded and Ubiquitous Systems, pp. 24-35, 2009.
  7. S. Lee, and J. Kim. "Using dynamic voltage scaling for energy-efficient flash-based storage devices," IEEE International SoC Design Conference, 2010.
  8. Grupp, Laura M., et al. "Characterizing flash memory: anomalies, observations, and applications," IEEE International Symposium on Microarchitecture, 2009.
  9. Mohan, Vidyabhushan, Sudhanva Gurumurthi, and Mircea R. Stan. "FlashPower: A detailed power model for NAND flash memory," in Proceedings of the Conference on Design, Automation and Test in Europe, 2010.
  10. Mohan, Vidyabhushan, et al. "Modeling Power Consumption of NAND Flash Memories Using FlashPower," IEEE Transactions on Computer - Aided Design of Integrated Circuits and Systems, vol. 32, no.7, pp. 1031-1044, 2013. https://doi.org/10.1109/TCAD.2013.2249557