DOI QR코드

DOI QR Code

Anti-Melanogenic Potentials of Nanoparticles from Calli of Resveratrol-Enriched Rice against UVB-Induced Hyperpigmentation in Guinea Pig Skin

  • Received : 2015.10.13
  • Accepted : 2015.11.17
  • Published : 2016.01.01

Abstract

We already reported that genetically engineered resveratrol-enriched rice (RR) showed to down-regulate skin melanogenesis. To be developed to increase the bioactivity of RR using calli from plants, RR was adopted for mass production using plant tissue culture technologies. In addition, high-pressure homogenization (HPH) was used to increase the biocompatibility and penetration of the calli from RR into the skin. We aimed to develop anti-melanogenic agents incorporating calli of RR (cRR) and nanoparticles by high-pressure homogenization, examining the synergistic effects on the inhibition of UVB-induced hyperpigmentation. Depigmentation was observed following topical application of micro-cRR, nano-calli of normal rice (cNR), and nano-cRR to ultraviolet B (UVB)-stimulated hyperpigmented guinea pig dorsal skin. Colorimetric analysis, tyrosinase immunostaining, and Fontana-Masson staining for UVB-promoted melanin were performed. Nano-cRR inhibited changes in the melanin color index caused by UVB-promoted hyperpigmentation, and demonstrated stronger anti-melanogenic potential than micro-cRR. In epidermal skin, nano-cRR repressed UVB-promoted melanin granules, thereby suppressing hyperpigmentation. The UVB-enhanced, highly expressed tyrosinase in the basal layer of the epidermis was inhibited by nano-cRR more prominently than by micro-cRR and nano-cNR. The anti-melanogenic potency of nano-cRR also depended on pH and particle size. Nano-cRR shows promising potential to regulate skin pigmentation following UVB exposure.

Keywords

References

  1. Alaluf, S., Atkins, D., Barrett, K., Blount, M., Carterv N. and Heath, A. (2002) The impact of epidermal melanin on objective measurements of human skin colour. Pigment Cell Res. 15, 119-126. https://doi.org/10.1034/j.1600-0749.2002.1o072.x
  2. Baek, S. H., Chung, H. J., Lee, H. K., D'Souza, R., Jeon, Y., Kim, H. J., Kwon, S. H. and Hong, S. T. (2014) Treatment of obesity with the resveratrol-enriched rice DJ-526. Sci. Rep. 4, 3879.
  3. Baek, S. H., Shin, W. C., Ryu, H. S., Lee, D. W., Moon, E., Seo, C. S., et al. (2013) Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PloS One. 8, e57930. https://doi.org/10.1371/journal.pone.0057930
  4. Chang, M. S., Choi, M. J., Park, S. Y. and Park, S. K. (2010) Inhibitory effects of Hoelen extract on melanogenesis in B16/F1 melanoma cells. Phytother. Res. 24, 1359-1364. https://doi.org/10.1002/ptr.3123
  5. Chapagain, B. P., Saharan, V. and Wiesman, Z. (2008) Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresour. Technol. 99, 1165-1168. https://doi.org/10.1016/j.biortech.2007.02.023
  6. Cui, X. H., Chakrabarty, D., Lee, E. J. and Paek, K. Y. (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour. Technol. 101, 4708-4716. https://doi.org/10.1016/j.biortech.2010.01.115
  7. Delevoye, C. (2014) Melanin transfer: the keratinocytes are more than gluttons. J. Invest. Dermatol. 134, 877-879. https://doi.org/10.1038/jid.2013.487
  8. Deshpande, A., Dhadi, S. R., Hager, E. J. and Ramakrishna, W. (2012) Anticancer activity of rice callus suspension culture. Phytother. Res. 26, 1075-1081. https://doi.org/10.1002/ptr.3699
  9. Franco, D. C., de Carvalho, G. S., Rocha, P. R., da Silva Teixeira, R., da Silva, A. D. and Raposo, N. R. (2012) Inhibitory effects of resveratrol analogs on mushroom tyrosinase activity. Molecules 17, 11816-11825. https://doi.org/10.3390/molecules171011816
  10. Goh, M. J., Lee, H. K., Cheng, L., Kong, D. Y., Yeon, J. H., et al. (2013) Depigmentation effect of kadsuralignan f on melan-a murine melanocytes and human skin equivalents. Int. J. Mol. Sci. 14, 1655- 1666. https://doi.org/10.3390/ijms14011655
  11. Jafarain, A., Asghari, G. and Ghassami, E. (2014) Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells. Ad. Biomed. Res. 3, 194.
  12. Jeong, E. T., Jin, M. H., Kim, M. S., Chang, Y. H. and Park, S. G. (2010) Inhibition of melanogenesis by piceid isolated from Polygonum cuspidatum. Arch. Pharm. Res. 33, 1331-1338. https://doi.org/10.1007/s12272-010-0906-x
  13. Karadag, A., Ozcelik, B. and Huang, Q. (2014) Quercetin nanosuspensions produced by high-pressure homogenization. J. Agric. Food Chem. 62, 1852-1859. https://doi.org/10.1021/jf404065p
  14. Kumar, M. S., Chaudhury, S. and Balachandran, S. (2014) In vitro callus culture of Heliotropium indicum Linn. for assessment of total phenolic and flavonoid content and antioxidant activity. Appl. Biochem. Biotechnol. 174, 2897-2909. https://doi.org/10.1007/s12010-014-1235-1
  15. Lee, T. H., Seo, J. O., Baek, S. H. and Kim, S. Y. (2014a) Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. 22, 35-40. https://doi.org/10.4062/biomolther.2013.081
  16. Lee, T. H., Seo, J. O., Do, M. H., Ji, E., Baek, S. H. and Kim, S. Y. (2014b) Resveratrol-enriched rice down-regulates melanin synthesis in UVB-Induced guinea pigs epidermal skin tissue. Biomol. Ther. 22, 431-437. https://doi.org/10.4062/biomolther.2014.098
  17. Luo, L. H., Kim, H. J., Nguyen, D. H., Lee, H. B., Lee, N. H. and Kim, E. K. (2009) Depigmentation of melanocytes by (2Z,8Z)-matricaria acid methyl ester isolated from Erigeron breviscapus. Biol. Pharm. Bull. 32, 1091-1094. https://doi.org/10.1248/bpb.32.1091
  18. Merisko-Liversidge, E. and Liversidge, G. G. (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 63, 427-440. https://doi.org/10.1016/j.addr.2010.12.007
  19. Oh, C. T., Lee, D., Koo, K., Lee, J., Yoon, H. S., Cho, Y. M. et al. (2014) Superoxide dismutase 1 inhibits alpha-melanocyte stimulating hormone and ultraviolet B-induced melanogenesis in murine skin. Ann. Dermatol. 26, 681-687. https://doi.org/10.5021/ad.2014.26.6.681
  20. Palmero, P., Colle, I., Lemmens, L., Panozzo, A., Nguyen, T. T, Hendrickx, M. and Van Loey, A. (2015) Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility. J. Sci. Food Agric. doi:10.1002/jsfa.7088. [Epub ahead of print]
  21. Pandey, H., Pandey, P., Singh, S., Gupta, R. and Banerjee, S. (2015) Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation. Protoplasma 252, 647-655. https://doi.org/10.1007/s00709-014-0711-3
  22. Park, J., Park, J. H., Suh, H. J., Lee, I. C., Koh, J. and Boo, Y. C. (2014) Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis. Arch. Dermatol. Res. 306, 475-487. https://doi.org/10.1007/s00403-014-1440-3
  23. Quan, G. L., Chen, B., Wang, Z. H., Wu, H., Huang, X. T., Wu, L. N. and Wu, C. B. (2012) Improving the dissolution rate of poorly watersoluble resveratrol by the ordered mesoporous silica. Yao Xue Xue Bao 47, 239-243.
  24. Ramsden, C. A. and Riley, P. A. (2014) Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. 22, 2388-2395. https://doi.org/10.1016/j.bmc.2014.02.048
  25. Satooka, H. and Kubo, I. (2012) Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg. Med. Chem. 20, 1090-1099. https://doi.org/10.1016/j.bmc.2011.11.030
  26. Shelar, D., Pawar, S. and Vavia, P. (2013) Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability. Drug Deliv. Transl. Res. 3, 384-391. https://doi.org/10.1007/s13346-012-0081-3
  27. Siddique, A. B., Ara, I., Islam, S. M. and Tuteja, N. (2014) Effect of air desiccation and salt stress factors on in vitro regeneration of rice (Oryza sativa L.). Plant Signal. Behav. 9, e977209. https://doi.org/10.4161/15592324.2014.977209
  28. Slominski, A. T., Zmijewski, M. A, Skobowiat, C., Zbytek, B., Slominski, R. M. and Steketee, J. D. (2012) Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, v, vii, 1-115. https://doi.org/10.1007/978-3-642-19683-6_1
  29. Zhong, S., Wu, Y., Soo-Mi, A. Zhao, J., Wang, J., Yang, S., et al. (2006) Depigmentation of melanocytes by the treatment of extracts from traditional Chinese herbs: a cell culture assay. Biol. Pharm. Bull. 29, 1947-1951. https://doi.org/10.1248/bpb.29.1947

Cited by

  1. Skin hyperpigmentation treatment using herbs: A review of clinical evidences 2017, https://doi.org/10.1080/14764172.2017.1368666
  2. Comparative Study of Glyceryl Behenate or Polyoxyethylene 40 Stearate-Based Lipid Carriers for Trans-Resveratrol Delivery: Development, Characterization and Evaluation of the In Vitro Tyrosinase Inhibition vol.19, pp.3, 2018, https://doi.org/10.1208/s12249-018-0961-z
  3. Resveratrol as a Multifunctional Topical Hypopigmenting Agent vol.20, pp.4, 2019, https://doi.org/10.3390/ijms20040956
  4. Human Skin Lightening Efficacy of Resveratrol and Its Analogs: From in Vitro Studies to Cosmetic Applications vol.8, pp.9, 2016, https://doi.org/10.3390/antiox8090332
  5. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances vol.6, pp.4, 2016, https://doi.org/10.3390/cosmetics6040057
  6. Effects of Thymoquinone and Iksan 526 callus Extract on B16F10 and A375 Cell Lines vol.16, pp.6, 2016, https://doi.org/10.3923/ijp.2020.479.491
  7. Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra costata vol.19, pp.3, 2016, https://doi.org/10.3390/md19030135
  8. The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review vol.13, pp.4, 2016, https://doi.org/10.3390/pharmaceutics13040451