DOI QR코드

DOI QR Code

Cloning and Characterization of an Endoglucanase Gene from Actinomyces sp. Korean Native Goat 40

  • Kim, Sung Chan (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Kang, Seung Ha (CSIRO Animal, Food and Health Science, Queensland Bioscience Precinct) ;
  • Choi, Eun Young (Department of Biological Science, Silla University) ;
  • Hong, Yeon Hee (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Bok, Jin Duck (Institute of Green-Bio Science and Technology, Seoul National University) ;
  • Kim, Jae Yeong (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University) ;
  • Choi, Yun Jaie (Institute of Green-Bio Science and Technology, Seoul National University) ;
  • Choi, In Soon (Department of Biological Science, Silla University) ;
  • Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
  • 투고 : 2015.07.26
  • 심사 : 2015.11.14
  • 발행 : 2016.01.01

초록

A gene from Actinomyces sp. Korean native goat (KNG) 40 that encodes an endo-${\beta}$-1,4-glucanase, EG1, was cloned and expressed in Escherichia coli (E. coli) $DH5{\alpha}$. Recombinant plasmid DNA from a positive clone with a 3.2 kb insert hydrolyzing carboxyl methyl-cellulose (CMC) was designated as pDS3. The entire nucleotide sequence was determined, and an open-reading frame (ORF) was deduced. The ORF encodes a polypeptide of 684 amino acids. The recombinant EG1 produced in E. coli $DH5{\alpha}$ harboring pDS3 was purified in one step using affinity chromatography on crystalline cellulose and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/zymogram analysis of the purified enzyme revealed two protein bands of 57.1 and 54.1 kDa. The amino terminal sequences of these two bands matched those of the deduced ones, starting from residue 166 and 208, respectively. Putative signal sequences, a Shine.Dalgarno-type ribosomal binding site, and promoter sequences related to the consensus sequences were deduced. EG1 has a typical tripartite structure of cellulase, a catalytic domain, a serine-rich linker region, and a cellulose-binding domain. The optimal temperature for the activity of the purified enzyme was $55^{\circ}C$, but it retained over 90% of maximum activity in a broad temperature range ($40^{\circ}C$ to $60^{\circ}C$). The optimal pH for the enzyme activity was 6.0. Kinetic parameters, $K_m$ and $V_{max}$ of rEG1 were 0.39% CMC and 143 U/mg, respectively.

키워드

참고문헌

  1. Areej, A., E. M. Altenaiji, and L. F. Yousef. 2014. Fungal cellulases from mangrove forests - A short review. J. Biochem. Tech. 5:765-774.
  2. Baird, S. D., D. A. Johnson, and V. L. Seligy. 1990. Molecular cloning, expression, and characterization of endo-beta-1,4-glucanase genes from Bacillus polymyxa and Bacillus circulans. J. Bacteriol. 172:1576-1586. https://doi.org/10.1128/jb.172.3.1576-1586.1990
  3. Bedford, M. R. and G. G. Partridge. 2001. Enzymes in Farm Animal Nutrition. CABI publishing. Wallingford, Xofrodshire, UK. 38 p.
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Chang, L., M. Ding, L. Bao, Y. Chen, J. Zhou, and H. Lu. 2011. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl. Microbiol. Biotechnol. 90:1933-1942. https://doi.org/10.1007/s00253-011-3182-x
  6. Clarke. A. J. 1997. Biodegradation of Cellulose: Enzymology and Biotechnology. A Technomic Publishing Company Book, Lancaster, PA, USA. 43 p.
  7. Cho, K. K., S. C. Kim, J. J. Woo, J. D. Bok, and Y. J. Choi. 2000. Molecular cloning and expression of a novel family A endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb. Technol. 27:475-481. https://doi.org/10.1016/S0141-0229(00)00256-8
  8. Coughlan, M. P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3:39-110. https://doi.org/10.1080/02648725.1985.10647809
  9. Culleton, H., V. A. McKie, and R. P. de Vries. 2014. Overexpression, purification and characterisation of homologous $\alpha$-L-arabinofuranosidase and endo-1,4-$\beta$-D-glucanase in Aspergillus vadensis. J. Ind. Microbiol. Biotechnol. 41:1697-1708. https://doi.org/10.1007/s10295-014-1512-6
  10. Forsberg, C. W., J. Gong, L. M. J. Malburg, H. Zhu, A. Iyo, K. J. Cheng, P. J. Krell, and J. P. Phillips. 1993. Preceedings of MIE Bioforum 93: Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Toba, Japan. 125-136.
  11. Gao, D., Y. Luan, Q. Wang, Q. Liang, and Q. Qi. 2015. Construction of cellulase-utilizing Escherichia coli based on a secretable cellulase. Microb. Cell Fact. 14:159-167. https://doi.org/10.1186/s12934-015-0349-7
  12. Gilkes, N. R., B. Henrissat, D. G. Kildrun, R. C. Miller, and R. A. J. Warren. 1991. Domains in microbial $\beta$-1, 4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Mol. Biol. Rev. 55:303-315.
  13. Gong, X., R. J. Gruninger, M. Qi, L. Paterson, R. J. Forster, R. M. Teather, and T. A. McAllister. 2012. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res. Notes. 5:566-576. https://doi.org/10.1186/1756-0500-5-566
  14. Kuhad, R. C., R. Gupta, and A. Singh 2011. Microbial cellulases and their industrial applications. Enzyme Res. Article ID 280696.
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  16. Lee, D. S. and M. Y. Pack. 1988. Use of Bacilli for overproduction of exocellular endo-beta-1,4-glucanase encoded by cloned gene. Enzyme Microb. Technol. 9:594-597.
  17. Lemaire, M. and P. Beguin. 1993. Nucleotide sequence of the celG gene of Clostridium thermocellum and characterization of its product, endoglucanase CelG. J. Bacteriol. 175:3353-3360. https://doi.org/10.1128/jb.175.11.3353-3360.1993
  18. Mackay, R. M., A. Lo, G. Willick, M. Zuker, S. Baird, M. Dove, F. Moranelli, and V. Seligy. 1986. Structure of a Bacillus subtilis endo-beta-1, 4-glucanase gene. Nucl. Acids Res. 14:9159-9170. https://doi.org/10.1093/nar/14.22.9159
  19. Malburg, L. M. Jr. and C. W. Forsberg. 1993. Fibrobacter succinogenes prossesses at least nine distinct glucanase genes. Can. J. Microbiol. 39:882-891. https://doi.org/10.1139/m93-132
  20. Min, H. K., Y. J. Choi, J. K. Ha, K. K. Cho, Y. M. Kwon, Y. H. Chang, and S. S. Lee. 1994a. Isolation and identification of anaerobic rumen bacterium, Actinomyces sp. 40 and enzymatic properties of ${\beta}$-1,4-glucanase. Asian Australas. J. Anim. Sci. 7:373-382. https://doi.org/10.5713/ajas.1994.373
  21. Min, H. K., Y. J. Choi, K. K. Cho, J. K. Ha, and J. H. Woo. 1994b. Cloning of the endoglucanase gene from Actinomyces sp. 40 in Escherichia coli and some properties of the gene products. J. Microbiol. Biotechnol. 4:102-107.
  22. Mittendorf, V. and J. A. Thomson. 1993. Cloning of an endo- (1o>4)-betaglucanase gene, celA, from the rumen bacterium Clostridium sp. ('C.longisporum') and characterization of its product. CelA, in Escherichia coli. J. Gen. Microbiol. 139:3233-3242. https://doi.org/10.1099/00221287-139-12-3233
  23. Miyatake, M. and K. Imada. 1997. A gene encoding endo-1,4-beta-glucanase from Bacillus sp. 22-28. Biosci. Biotechnol. Biochem. 61:362-364. https://doi.org/10.1271/bbb.61.362
  24. Nguyen, N. H., L. Maruset, T. Uengwetwanit, W. Mhuantong, P. Harnpicharnchai, V. Champreda, S. Tanapongpipat, K. Jirajaroenrat, S. K. Rakshit, L. Eurwilaichitr, and S. Pongpattanakitshote. 2012. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci. Biotechnol. Biochem. 76:1075-1084. https://doi.org/10.1271/bbb.110786
  25. Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Sequence of egV and properties of EgV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci. Biotechnol. Biochem. 64:80-88. https://doi.org/10.1271/bbb.64.80
  26. Park, K. M., H. T. Shin, and K. H. Kang. 1993. Isolation and identification of rumen bacteria from Korean native goat. I. Isolation and identification of Gram positive bacteria. Kor. J. Dairy Sci. 15:165-177.
  27. Perlman, D. and H. O. Halvorson. 1983. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167:391-409. https://doi.org/10.1016/S0022-2836(83)80341-6
  28. Poole, D. M., G. P. Hazlewood, J. I. Laurie, P. J. Barker, and H. J. Gilbert. 1990. Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol. Gen. Genet. 223:217-223.
  29. Rashamuse, K. J., D. F. Visser, F. Hennessy, J. Kemp, M. P. Rouxvan der Merwe, J. Badenhorst, T. Ronneburg, R. Francis-Pope, and D. Brady. 2013. Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library. Curr. Microbiol. 66:145-151. https://doi.org/10.1007/s00284-012-0251-z
  30. Sahu, N. P., D. N. Kamra, and S. S. Paul. 2004. Effect of cellulose degrading bacteria isolated from wild and domestic ruminants on in vitro dry matter digestibility of feed and enzyme production. Asian Australas. J. Anim. Sci. 17:199-202. https://doi.org/10.5713/ajas.2004.199
  31. Saito, H. and K. Miura. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta. Specialized Section on Nucleic Acids and Related Subjects 72:619-629.
  32. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd Ed. Cold Spring Harbour Laboratory Press. Cold Spring Harbor, NY, USA.
  33. Sanger, R., S. Niclien, and A. R. Coulson. 1997. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. 74:5463-5467.
  34. Seo, J. K., T. S. Park, I. H. Kwon, M. Y. Piao, C. H. Lee, and J. K. Ha. 2013. Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian Australas. J. Anim. Sci. 26:50-58. https://doi.org/10.5713/ajas.2012.12506
  35. Shine, J. and L. Dalgano. 1975. Determinant of cistron specificity in bacterial ribosomes. Naure 254:34-38.
  36. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195:19-23.
  37. Teather, R. M. and P. J. Wood. 1982. Use of Congo red - polysaccharide interactions in enumeration and characterization of celluloytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777-780.
  38. Von Heijne, G. 1985. Signal sequences: The limits of variation. J. Mol. Biol. 184:99-105. https://doi.org/10.1016/0022-2836(85)90046-4
  39. Yan, S. and G. Wu. 2014. Signal peptide of cellulase. Appl. Microbiol. Biotechnol. 98:5329-5362. https://doi.org/10.1007/s00253-014-5742-3
  40. Yuan, S. F., T. H. Wu, H. L. Lee, H. Y. Hsieh, W. L. Lin, B. Yang, C. K. Chang, Q. Li, J. Gao, C. H. Huang, M. C. Ho, R. T. Guo and P. H. Liang. 2015. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. J. Biol. Chem. 290:5739-5748. https://doi.org/10.1074/jbc.M114.604454

피인용 문헌

  1. Genetic diversity and patterns of population structure in Creole goats from the Americas vol.48, pp.3, 2017, https://doi.org/10.1111/age.12529
  2. Molecular cloning, heterologous expression, and functional characterization of a cellulolytic enzyme (Cel PRII) from buffalo rumen metagenome vol.7, pp.4, 2017, https://doi.org/10.1007/s13205-017-0895-2
  3. The unique GH5 cellulase member in the extreme halotolerant fungus Aspergillus glaucus CCHA is an endoglucanase with multiple tolerance to salt, alkali and heat: prospects for straw degradation applications vol.22, pp.4, 2018, https://doi.org/10.1007/s00792-018-1028-5
  4. Some characters of bacterial cellulases in goats' rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function vol.34, pp.5, 2021, https://doi.org/10.5713/ajas.20.0115