DOI QR코드

DOI QR Code

Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice

  • Han, Jie (Institute of Animal Husbandry and Veterinary, Shenyang Agricultural University) ;
  • Xu, Yunhe (College of Animal Husbandry and Veterinary, Liaoning Medical University) ;
  • Yang, Di (Institute of Animal Husbandry and Veterinary, Shenyang Agricultural University) ;
  • Yu, Ning (Institute of Biotechnology Research, Liaoning Academy of Agricultural Sciences) ;
  • Bai, Zishan (Institute of Animal Husbandry and Veterinary, Shenyang Agricultural University) ;
  • Bian, Lianquan (Institute of Animal Husbandry and Veterinary, Shenyang Agricultural University)
  • 투고 : 2015.06.24
  • 심사 : 2015.08.16
  • 발행 : 2016.01.01

초록

To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor ${\alpha}$ (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.

키워드

참고문헌

  1. Abud, H. E., N. Watson, and J. K. Heath. 2005. Growth of intestinal epithelium in organ culture is dependent on EGF signaling. Exp. Cell. Res. 303:252-262. https://doi.org/10.1016/j.yexcr.2004.10.006
  2. Barnard, J. A., R. D. Beauchamp, W. E. Russell, R. N. Dubois, and R. J. Coffey. 1995. Epidermal growth factor-related peptides and their relevance to gastrointestinal pathophysiology. Gastroenterol. 108: 564-580. https://doi.org/10.1016/0016-5085(95)90087-X
  3. Chen, R. Z., Z. Q. Liu, J. M. Zhao, R. P. Chen, F. L. Meng, and M. Zhang. 2011. Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosus. Food. Chem. 127:434-440. https://doi.org/10.1016/j.foodchem.2010.12.143
  4. Deyama, T., S. Nishibe, and Y. Nakazawa. 2001. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta. Pharmacologica. Sinica. 22:1057-1070.
  5. Dignass, A., K. Lynch-Devaney, H. Kindon, L. Thim, and D. K. Podolsky. 1994. Trefoil peptides promote epithelial migration through a transforming growth factor ${\beta}$-independent pathway. J. Clin. Invest. 94:376-383. https://doi.org/10.1172/JCI117332
  6. DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  7. Fang, J. N., A. Proksch, and H. Wagner. 1985. Immunologically active polysaccharides of Acanthopanax senticosus. Phytochemistry 24:2619-2622. https://doi.org/10.1016/S0031-9422(00)80681-0
  8. Field, F. J., K. Watt, and S. N. Mathur. 2010. TNF-alpha decreases ABCA1 expression and attenuates HDL cholesterol efflux in the human intestinal cell line Caco-2. J. Lipid Res. 51:1407-1415. https://doi.org/10.1194/jlr.M002410
  9. Han, J., L. Q. Bian, X. J. Liu, F. Zhang, Y. R. Zhang, and N. Yu. 2014. Effects of Acanthopanax senticosus polysaccharide supplementation on growth performance, immunity, blood parameters and expression of pro-inflammatory cytokines genes in challenged weaned piglets. Asian Australas. J. Anim. 27:1035-1043. https://doi.org/10.5713/ajas.2013.13659
  10. Han, S. B., Y. D. Yoon, H. J. Ahn, H. S. Lee, C. W. Lee, W. K. Yoon. S. K. Park, and H. M. Kim. 2003. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int. lmmunopharmacol. 3:1301-1312. https://doi.org/10.1016/S1567-5769(03)00118-8
  11. Hoffmann, W. 2005. Trefoil factors. Cell. Mol. Life. Sci. 62:2932-2938. https://doi.org/10.1007/s00018-005-5481-9
  12. Hou, Y. Q., L. Wang, B. Y. Ding, Y. L. Liu, H. L. Zhu, J. Liu, Y. T. Liu, X. Wu, Y. L. Yin, and G. Y. Wu. 2010. Dietary ${\alpha}$- ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555-564. https://doi.org/10.1007/s00726-010-0473-y
  13. Hou, Y. Q., Y. L. Liu, J. Hu, and W. H. Shen. 2006. Effects of lactitol and tributyrin on growth performance, small intestinal morphology and enzyme activity in weaned pigs. Asian Australas. J. Anim. Sci. 19:1470-1477. https://doi.org/10.5713/ajas.2006.1470
  14. Irvine, E. J. and J. K. Marshall. 2000. Increased intestinal permeability precedes the onset of Crohn's disease in a subject with familial risk. Gastroenterology 119:1740-1744. https://doi.org/10.1053/gast.2000.20231
  15. Kruzel, M. L., Y. Harari, C. Y. Chen, and G. A. Castro. 2000. Lactoferrin protects gut mucosal integrity during endotoxemia induced by lipopolysaccharide in mice. Inflammation 24:33-44. https://doi.org/10.1023/A:1006935908960
  16. Liu, Y. L., F. Chen, J. Odle, X. Lin, S. K. Jacobi, H .L. Zhu, Z. Wu, and Y. Hou. 2012. Fish oil enhances intestinal integrity and inhibits $TLR_{4}$ and $NOD_{2}$ signaling pathways in weaned pigs after LPS challenge. J. Nutr. 142:2017-2024. https://doi.org/10.3945/jn.112.164947
  17. Liu, Y. L., J. J. Huang, Y. Q. Hou, H. L. Zhu, S. J. Zhao, B. Y. Ding, Y. Yin, G. Yi, J. Shi, and W. Fan. 2008. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br. J. Nutr. 100:552-560. https://doi.org/10.1017/S0007114508911612
  18. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  19. Lorenzsonn, V., H. Korsmo, and W. A. Olsen. 1987. Localization of sucrase-isomaltase in the rat enterocyte. Gastroenterology 92:98-105. https://doi.org/10.1016/0016-5085(87)90844-4
  20. Luna, L. G. 1968. Manual of histologic staining methods of the armed forces institute of pathology. 3th Ed. McGraw-Hill Book Company Press. New York, NY, USA.
  21. Mercer, D. W., G. S. Smith, J. M. Cross, D. H. Russell, L. Chang, and J. Cacioppo. 1996. Effects of lipopolysaccharide on intestinal injury: potential role of nitric oxide and lipid peroxidation. J. Surg. Res. 63:185-192. https://doi.org/10.1006/jsre.1996.0245
  22. Ou, Y. F., P. H. Yin, L. Zhao, and X. S. Huang 2006. Determination of Monsaccharides in the garlic polysaccharide using pulsed amperometric ion chromatography. Chinese J. Spectrographic. Lab. 23:629-632.
  23. Park, H. G., S. I. Han, S. Y. Oh, and H. S. Kang. 2005. Cellular responses to mild heat stress. Cell. Mol. Life Sci. 62:10-23. https://doi.org/10.1007/s00018-004-4208-7
  24. Pie, S., J. P. Lalles, F. Blazy, J. Laffitte, B. Seve, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134:641-647. https://doi.org/10.1093/jn/134.3.641
  25. Scharek, L., J. Guth, K. Reiter, K. D. Weyrauch, D. Taras, P. Schwerk, P. Schierack, M. F. Schmidt, L. H. Wieler, and K. Tedin. 2005. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet. Immunol. Immunopathol. 105:151-161. https://doi.org/10.1016/j.vetimm.2004.12.022
  26. Spurlock, M. E. 1997. Regulation of metabolism and growth during immune challenge: An overview of cytokine function. J. Anim. Sci. 75:1773-1783. https://doi.org/10.2527/1997.7571773x
  27. Staub, A. M. 1965. Removal of protein-sevag method. In: Methods in Carbohydrate Chemistry (ED. R. L. Whistler). Academic Press, New York, USA.
  28. Steinmann, G. G., A. Esperester, and P. Joller. 2001. Immunopharmacological in vitro effects of Eleutheroeoceus senticosus extracts. Arzneimittel-forschung 51:76-83.
  29. Vicente, Y., C. Da Rocha, J. Yu, G. Hernandez-Peredo, L. Martinez, B. Perez-Mies, and J. A. Tovar. 2001. Architecture and function of the gastroesophageal barrier in the piglet. Dig. Dis. Sci. 46:1899-1908. https://doi.org/10.1023/A:1010631030320
  30. Weiler, F., T. Marbe, W. Scheppach, and J. Schauber. 2005. Influence of protein kinase C on transcription of the tight junction elements ZO-1 and occludin. J. Cell. Physiol. 204:83-86. https://doi.org/10.1002/jcp.20268
  31. Xu, S. Y., R. L. Bian, and X. Chen. 2002. Pharmacological Experiment Methodology. 3th Ed. People's Medical Publishing House Press, Beijing, China.
  32. Zhang, C., Z. Y. Sheng, S. Hu, J. C. Gao, S. Yu, and Y. Liu. 2002. The influence of apoptosis of mucosal epithelial cells on intestinal barrier integrity after scald in rats. Burns 28:731-737. https://doi.org/10.1016/S0305-4179(02)00210-3
  33. Zhang, L. P., L. Y. Chen, and Y. S. Zhang. 1993. Study on water soluble polysaccharides from Acanthopanax senticosus fruits isolation and purification and structural investigating of AS-2. Chin. J. Biochem. Mol. Biol. 9:1-5.
  34. Zheng, C. T., T. Wang, Z. N. Lu, S. G. Zou, R. J. Xu, and J. S. Zhang. 1999. Effects of oral insulin and trypsinized formula milk on small intestinal growth and development in newborn pigs. Acta Vet. Et Zootech. Sin. 30:405-413.

피인용 문헌

  1. inhibition of NF-κB/MLCK pathway in a mouse endotoxemia model vol.23, pp.12, 2017, https://doi.org/10.3748/wjg.v23.i12.2175
  2. Protective role of down-regulated microRNA-31 on intestinal barrier dysfunction through inhibition of NF-κB/HIF-1α pathway by binding to HMOX1 in rats with sepsis vol.24, pp.1, 2018, https://doi.org/10.1186/s10020-018-0053-2
  3. Polysaccharide on Nutrient Digestion, Metabolism, and Immune Response of the Small Intestine and Colon-An iTRAQ-Based Proteomic Analysis vol.18, pp.7, 2018, https://doi.org/10.1002/pmic.201700443
  4. Eph/ephrin signalling serves a bidirectional role in lipopolysaccharide-induced intestinal injury vol.18, pp.2, 2018, https://doi.org/10.3892/mmr.2018.9169
  5. Animal Models of Undernutrition and Enteropathy as Tools for Assessment of Nutritional Intervention. vol.11, pp.9, 2016, https://doi.org/10.3390/nu11092233
  6. Evaluation of the protective effects of Ganoderma atrum polysaccharide on acrylamide-induced injury in small intestine tissue of rats vol.10, pp.9, 2016, https://doi.org/10.1039/c9fo01452g
  7. Acanthopanax senticosus polysaccharide regulates the intestinal homeostasis disruption induced by toxic chemicals in Drosophila vol.34, pp.1, 2016, https://doi.org/10.1002/ptr.6522
  8. Effects of astragalus and ginseng polysaccharides on growth performance, immune function and intestinal barrier in weaned piglets challenged with lipopolysaccharide vol.104, pp.4, 2020, https://doi.org/10.1111/jpn.13244
  9. Advances in the Extraction, Purification, Structural Characteristics and Biological Activities of Eleutherococcus senticosus Polysaccharides: A Promising Medicinal and Edible Resource With Development vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.753007