DOI QR코드

DOI QR Code

Effect of Fodder Tree Species with Condensed Tannin Contents on In vitro Methane Production

  • 투고 : 2015.05.28
  • 심사 : 2015.08.15
  • 발행 : 2016.01.01

초록

The objective was to evaluate the effect of fodder tree species (FTS) with condensed tannin contents: Cordia elaeagnoides, Platymiscium lasiocarpum, Vitex mollis, and Haematoxylon brasiletto, on in vitro methane ($CH_4$) production at 24 h post incubation. The analysis was performed using the in vitro gas production technique, with three levels of inclusion/species: 600, 800, and 1,000 mg and with 4 replicates/species/level of inclusion. The substrate was incubated at $39^{\circ}C$, and the gas and $CH_4$ production were recorded at 4, 8, 12, and 24 h post incubation. The data collected was analyzed through Pearson correlation, polinomial regression and fixed effects models. There were negative correlations between FTS-total gas volume (r = -0.40; p<0.001); FTS-volume of $CH_4$ produced (r = -0.40; p<0.001) and between the inclusion level-volume of $CH_4$ produced (r = -0.20; p<0.001). As well as a positive correlation between hours post incubation-total gas volume (r = 0.42; p<0.001) and between hours post incubation-volume of $CH_4$ produced (r = 0.48; p<0.001). The FTS: C. elaeagnoides, V. mollis, and H. brasiletto have potential, in the three inclusion levels analyzed, to reduce $CH_4$ emission on in vitro trials (>32.7%), taking into account the total $CH_4$ production at 24 h of the forage used as reference (Avena sativa). It's suggested that C. elaeagnoides-according to its crude protein, neutral detergent fiber, and condensed tannins content- is the best alternative within the FTS analyzed, for feeding ruminants and for the control of $CH_4$ emissions during the dry season.

키워드

참고문헌

  1. Abdalla, A. L., H. Louvandini, S. M. A. H. Sallam, I. C. S. Bueno, S. M. Tsai, and A. V. O. Figueira. 2012. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Trop. Anim. Health Prod. 44:953-964. https://doi.org/10.1007/s11250-011-9992-0
  2. AOAC. 1995. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
  3. Beuvink, J., S. Spoelstra, and R. Hogendorp. 1992. An automated method for measuring time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agric. Sci. 40:401-407.
  4. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522. https://doi.org/10.3168/jds.2008-1441
  5. Carulla, J. E., M. Kreuzer, A. Machmüller, and H. D. Hess. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56:961-970. https://doi.org/10.1071/AR05022
  6. Geishauser, T. 1993. An instrument for collection and transfer of ruminal fluid and for administration of water soluble drugs in adult cattle. Bovine Pract. 27:38-42.
  7. Getachew, G., M. Blümmel, H. P. S. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 72:261-281. https://doi.org/10.1016/S0377-8401(97)00189-2
  8. Hariadi, B. T. and B. Santoso. 2010. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric. 90:456-461.
  9. Hess, H. D., T. T. Tiemann, F. Noto, J. E. Carulla, and M. Kreuzer. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congr. Ser. 1293:164-167. https://doi.org/10.1016/j.ics.2006.01.010
  10. Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, P. R. Cheeke, and C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821. https://doi.org/10.3168/jds.2008-1843
  11. Huang, X. D., J. B. Liang, H. Y. Tan, R. Yahya, B. Khamseekhiew, and Y. W. Ho. 2010. Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Anim. Feed Sci. Technol. 159:81-87. https://doi.org/10.1016/j.anifeedsci.2010.05.008
  12. INEGI (National Institute of Statistics, Geography and Informatics). 2000. Encyclopedia of the Municipalities of Michoacan, Mexico. 30-33.
  13. Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer, and F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231-243. https://doi.org/10.1016/j.anifeedsci.2010.11.009
  14. Jayanegara, A., N. Togtokhbayar, H. P. S. Makkar, and K. Becker. 2009. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol. 150:230-237. https://doi.org/10.1016/j.anifeedsci.2008.10.011
  15. Kume, S. 2002. Establishment of profitable dairy farming system on control of methane production in Hokkaido region. In Greenhouse Gases and Animal Agriculture (Eds. J. Takahashi and B. A. Young). Elsevier Science, Obihiro, Japan. 87-94.
  16. Leng, R. A. 2010. Decline in available world resources - implications for livestock production system. FAO/IAEA Sustainable Improvement of Animal Production and Health, Rome, Italy. 11-19.
  17. Meagher, L., M. Tavendale, D. Pacheco, N. Walker, G. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123-124(Part 1): 403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
  18. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  19. Min, B. R., W. E. Pinchak, R. C. Anderson, J. D. Fulford, and R. Puchala. 2006. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat. J. Anim. Sci. 84: 2546-2554. https://doi.org/10.2527/jas.2005-590
  20. Njidda, A. A. and A. Nasiru. 2010. In vitro gas production and dry matter digestibility of tannin-containing forages of semiarid region of north-eastern Nigeria. Pakistan J. Nutr. 9:60-66. https://doi.org/10.3923/pjn.2010.60.66
  21. O'Kiely, P., A. Navarro-Villa, M. O'Brien, S. Lopez, and T. M. Boland. 2011. In vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT). Anim. Feed Sci. Technol. 168:152-164. https://doi.org/10.1016/j.anifeedsci.2011.04.091
  22. Patra, A. K. 2012. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 184:1929-1952. https://doi.org/10.1007/s10661-011-2090-y
  23. Patra, A. K., D. N. Kamra, and N. Agarwal. 2006. Effect of plants containing secondary metabolites on in vitro methanogenesis, enzyme profile and fermentation of feed with rumen liquor of buffalo. Anim. Nutr. Feed Technol. 6:203-213.
  24. Price, M. L. and L. G. Butler. 1997. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 25:1268-1273.
  25. SAS (Statistical Analysis System). 2000. SAS User's Guide, Version 8.1. Cary, NC. USA.
  26. Tavendale, M. H., L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123:403-419.
  27. Thornton, P. K. 2010. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B. 365:2853-2867. https://doi.org/10.1098/rstb.2010.0134
  28. Tiemann, T. T., C. E. Lascano, H-R. Wettstein, A. C. Mayer, M. Kreuzer, and H. D. Hess. 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2:790-799.
  29. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  30. Wilson, J. R. and R. D. Hatfield. 1997. Structural and chemical changes of cell wall types during stem development: Consequences for fibre degradation by rumen microflora. Aust. J. Agric. Res. 48:165-180. https://doi.org/10.1071/A96051