Browse > Article
http://dx.doi.org/10.5713/ajas.15.0464

Effect of Fodder Tree Species with Condensed Tannin Contents on In vitro Methane Production  

Vazquez, Ernestina Gutierrez (Agriculture and Forestry Research Institute, Michoacan University of San Nicolas de Hidalgo)
Medina, Leonardo Hernandez (Agriculture and Forestry Research Institute, Michoacan University of San Nicolas de Hidalgo)
Benavides, Liliana Marquez (Agriculture and Forestry Research Institute, Michoacan University of San Nicolas de Hidalgo)
Caratachea, Aureliano Juarez (Agriculture and Forestry Research Institute, Michoacan University of San Nicolas de Hidalgo)
Razo, Guillermo Salas (Agriculture and Forestry Research Institute, Michoacan University of San Nicolas de Hidalgo)
Burgos, Armin Javier Ayala (Faculty of Veterinary Medicine and Zootechny, Autonomous University of Yucatan)
Rodriguez, Ruy Ortiz (Faculty of Veterinary Medicine and Zootechny, Michoacan University of San Nicolas de Hidalgo)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.1, 2016 , pp. 73-79 More about this Journal
Abstract
The objective was to evaluate the effect of fodder tree species (FTS) with condensed tannin contents: Cordia elaeagnoides, Platymiscium lasiocarpum, Vitex mollis, and Haematoxylon brasiletto, on in vitro methane ($CH_4$) production at 24 h post incubation. The analysis was performed using the in vitro gas production technique, with three levels of inclusion/species: 600, 800, and 1,000 mg and with 4 replicates/species/level of inclusion. The substrate was incubated at $39^{\circ}C$, and the gas and $CH_4$ production were recorded at 4, 8, 12, and 24 h post incubation. The data collected was analyzed through Pearson correlation, polinomial regression and fixed effects models. There were negative correlations between FTS-total gas volume (r = -0.40; p<0.001); FTS-volume of $CH_4$ produced (r = -0.40; p<0.001) and between the inclusion level-volume of $CH_4$ produced (r = -0.20; p<0.001). As well as a positive correlation between hours post incubation-total gas volume (r = 0.42; p<0.001) and between hours post incubation-volume of $CH_4$ produced (r = 0.48; p<0.001). The FTS: C. elaeagnoides, V. mollis, and H. brasiletto have potential, in the three inclusion levels analyzed, to reduce $CH_4$ emission on in vitro trials (>32.7%), taking into account the total $CH_4$ production at 24 h of the forage used as reference (Avena sativa). It's suggested that C. elaeagnoides-according to its crude protein, neutral detergent fiber, and condensed tannins content- is the best alternative within the FTS analyzed, for feeding ruminants and for the control of $CH_4$ emissions during the dry season.
Keywords
Fodder Tree Species; Condensed Tannins; Methane; In vitro;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522.   DOI
2 Carulla, J. E., M. Kreuzer, A. Machmüller, and H. D. Hess. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56:961-970.   DOI
3 Geishauser, T. 1993. An instrument for collection and transfer of ruminal fluid and for administration of water soluble drugs in adult cattle. Bovine Pract. 27:38-42.
4 Getachew, G., M. Blümmel, H. P. S. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 72:261-281.   DOI
5 Hariadi, B. T. and B. Santoso. 2010. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric. 90:456-461.
6 Hess, H. D., T. T. Tiemann, F. Noto, J. E. Carulla, and M. Kreuzer. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congr. Ser. 1293:164-167.   DOI
7 Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, P. R. Cheeke, and C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821.   DOI
8 Huang, X. D., J. B. Liang, H. Y. Tan, R. Yahya, B. Khamseekhiew, and Y. W. Ho. 2010. Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Anim. Feed Sci. Technol. 159:81-87.   DOI
9 INEGI (National Institute of Statistics, Geography and Informatics). 2000. Encyclopedia of the Municipalities of Michoacan, Mexico. 30-33.
10 Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer, and F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231-243.   DOI
11 Jayanegara, A., N. Togtokhbayar, H. P. S. Makkar, and K. Becker. 2009. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol. 150:230-237.   DOI
12 Kume, S. 2002. Establishment of profitable dairy farming system on control of methane production in Hokkaido region. In Greenhouse Gases and Animal Agriculture (Eds. J. Takahashi and B. A. Young). Elsevier Science, Obihiro, Japan. 87-94.
13 Leng, R. A. 2010. Decline in available world resources - implications for livestock production system. FAO/IAEA Sustainable Improvement of Animal Production and Health, Rome, Italy. 11-19.
14 Meagher, L., M. Tavendale, D. Pacheco, N. Walker, G. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123-124(Part 1): 403-419.   DOI
15 Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
16 Patra, A. K. 2012. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 184:1929-1952.   DOI
17 Min, B. R., W. E. Pinchak, R. C. Anderson, J. D. Fulford, and R. Puchala. 2006. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat. J. Anim. Sci. 84: 2546-2554.   DOI
18 Njidda, A. A. and A. Nasiru. 2010. In vitro gas production and dry matter digestibility of tannin-containing forages of semiarid region of north-eastern Nigeria. Pakistan J. Nutr. 9:60-66.   DOI
19 O'Kiely, P., A. Navarro-Villa, M. O'Brien, S. Lopez, and T. M. Boland. 2011. In vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT). Anim. Feed Sci. Technol. 168:152-164.   DOI
20 Patra, A. K., D. N. Kamra, and N. Agarwal. 2006. Effect of plants containing secondary metabolites on in vitro methanogenesis, enzyme profile and fermentation of feed with rumen liquor of buffalo. Anim. Nutr. Feed Technol. 6:203-213.
21 Price, M. L. and L. G. Butler. 1997. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 25:1268-1273.
22 SAS (Statistical Analysis System). 2000. SAS User's Guide, Version 8.1. Cary, NC. USA.
23 Tavendale, M. H., L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123:403-419.
24 Wilson, J. R. and R. D. Hatfield. 1997. Structural and chemical changes of cell wall types during stem development: Consequences for fibre degradation by rumen microflora. Aust. J. Agric. Res. 48:165-180.   DOI
25 Thornton, P. K. 2010. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B. 365:2853-2867.   DOI
26 Tiemann, T. T., C. E. Lascano, H-R. Wettstein, A. C. Mayer, M. Kreuzer, and H. D. Hess. 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2:790-799.
27 Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI
28 Beuvink, J., S. Spoelstra, and R. Hogendorp. 1992. An automated method for measuring time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agric. Sci. 40:401-407.
29 Abdalla, A. L., H. Louvandini, S. M. A. H. Sallam, I. C. S. Bueno, S. M. Tsai, and A. V. O. Figueira. 2012. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Trop. Anim. Health Prod. 44:953-964.   DOI
30 AOAC. 1995. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Arlington, VA, USA.