DOI QR코드

DOI QR Code

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup (Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Shin, Donghyun (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Wonseok (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Taye, Mengistie (Department of Agricultural Biotechnology, Animal Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Cho, Kwanghyun (National Livestock Research Institute) ;
  • Park, Kyoung-Do (Genomic Informatics Center, Hankyong National University) ;
  • Kim, Heebal (Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University)
  • Received : 2015.06.01
  • Accepted : 2015.09.18
  • Published : 2016.01.01

Abstract

Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

Keywords

References

  1. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57:289-300.
  2. Bindea, G., B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.-H. Fridman, F. Pages, Z. Trajanoski, and J. Galon. 2009. Cluego: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-1093. https://doi.org/10.1093/bioinformatics/btp101
  3. Boitard, S. and D. Rocha. 2013. Detection of signatures of selective sweeps in the blonde d'aquitaine cattle breed. Anim. Genet. 44:579-583. https://doi.org/10.1111/age.12042
  4. Browning, B. L. and S. R. Browning. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84:210-223. https://doi.org/10.1016/j.ajhg.2009.01.005
  5. Catillo, G., B. Moioli, and F. Napolitano. 2001. Estimation of genetic parameters of some productive and reproductive traits in italian buffalo. Genetic evaluation with blup-animal model. Asian Australas. J. Anim. Sci. 14:747-753. https://doi.org/10.5713/ajas.2001.747
  6. Endelman, J. B. 2011. Ridge regression and other kernels for genomic selection with R package rrblup. Plant. Genome. 4:250-255. https://doi.org/10.3835/plantgenome2011.08.0024
  7. Ewens, W. J. 1989. An interpretation and proof of the fundamental theorem of natural selection. Theor. Popul. Biol. 36:167-180. https://doi.org/10.1016/0040-5809(89)90028-2
  8. Flicek, P., M. R. Amode, D. Barrell, K. Beal, S. Brent, D. Carvalho-Silva, P. Clapham, G. Coates, S. Fairley, and S. Fitzgerald et al. 2011. Ensembl 2012. Nucl. Acids Res. doi: 10.1093/nar/gkr991.
  9. Frank, S. A. and M. Slatkin. 1992. Fisher's fundamental theorem of natural selection. Trends. Ecol. Evol. 7:92-95. https://doi.org/10.1016/0169-5347(92)90248-A
  10. Goddard, M., B. J. Hayes, and T. H. E. Meuwissen. 2011. Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128:409-421. https://doi.org/10.1111/j.1439-0388.2011.00964.x
  11. Goddard, M. E. and B. Hayes. 2007. Genomic selection. J. Anim. Breed. Genet. 124:323-330. https://doi.org/10.1111/j.1439-0388.2007.00702.x
  12. Hartl, D. L. 1988. A Primer of Population Genetics. Sinauer Associates, Inc., Sunderland, MA, USA.
  13. Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423-447. https://doi.org/10.2307/2529430
  14. Lee, Y.-S., H.-J. Kim, S. Cho, and H. Kim. 2014. The usage of an SNP-SNP relationship matrix for best linear unbiased prediction (BLUP) analysis using a community-based cohort study. Genomics Inform. 12:254-260. https://doi.org/10.5808/GI.2014.12.4.254
  15. Mwai, O., O. Hanotte, Y.-J. Kwon, and S. Cho. 2015. African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. Asian Australas. J. Anim. Sci. 28:911-921. https://doi.org/10.5713/ajas.15.0002R
  16. Penzes, P., A. Beeser, J. Chernoff, M. R. Schiller, B. A. Eipper, R. E. Mains, and R. L. Huganir. 2003. Rapid induction of dendritic spine morphogenesis by trans-synaptic EphrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263-274. https://doi.org/10.1016/S0896-6273(02)01168-6
  17. Price, G. R. 1972. Fisher's 'fundamental theorem' made clear. Ann. Hum. Genet. 36:129-140. https://doi.org/10.1111/j.1469-1809.1972.tb00764.x
  18. Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498-2504. https://doi.org/10.1101/gr.1239303
  19. Skjervold, H. and H. J. Langholz. 1964. Factors affecting the optimum structure of A. I. breeding in dairy cattle. Z. Tierz. Zuchtungsbio 80:25-40.
  20. Smith, J. M. and J. Haigh. 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23:23-35. https://doi.org/10.1017/S0016672300014634
  21. Tada, T. and M. Sheng. 2006. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16:95-101. https://doi.org/10.1016/j.conb.2005.12.001

Cited by

  1. Combined QTL and Genome Scan Analyses With the Help of 2b-RAD Identify Growth-Associated Genetic Markers in a New Fast-Growing Carp Strain vol.9, pp.None, 2018, https://doi.org/10.3389/fgene.2018.00592
  2. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information vol.13, pp.8, 2016, https://doi.org/10.1371/journal.pone.0200694
  3. Gene Banks as Reservoirs to Detect Recent Selection: The Example of the Asturiana de los Valles Bovine Breed vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.575405
  4. Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle vol.11, pp.5, 2016, https://doi.org/10.3390/ani11051392