DOI QR코드

DOI QR Code

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B. (School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana) ;
  • Silveira, H. (Department of Animal Sciences, Universidade Federal de Lavras) ;
  • Luciano, F.B. (School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana) ;
  • Andrade, C. (School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana) ;
  • Costa, L.B. (School of Agricultural Sciences and Veterinary Medicine, Pontificia Universidade Catolica do Parana) ;
  • Rostagno, M.H. (Department of Animal Sciences, Purdue University)
  • Received : 2015.02.11
  • Accepted : 2015.05.11
  • Published : 2016.01.01

Abstract

The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

Keywords

References

  1. Abasht, B., M. G. Kaiser, and S. J. Lamont. 2008. Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Vet. Immunol. Immunopathol. 123:314-323. https://doi.org/10.1016/j.vetimm.2008.02.010
  2. Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675-680. https://doi.org/10.1038/90609
  3. Alam, S. N., H. Yammine, O. Moaven, R. Ahmed, A. K. Moss, B. Biswas, N. Muhammad, R. Biswas, A. Raychowdhury, K. Kaliannan, S. Ghosh, M. Ray, S. R. Hamarneh, S. Barua, N. S. Malo, A. K. Bhan, M. S. Malo, and R. A. Hodin. 2014. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann. Surg. 259:715-722. https://doi.org/10.1097/SLA.0b013e31828fae14
  4. Artis, D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8:411-420. https://doi.org/10.1038/nri2316
  5. Bates, J. M., J. Akerlund, E. Mittge, and K. Guillemin. 2007. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell. Host. Microbe. 2:371-382. https://doi.org/10.1016/j.chom.2007.10.010
  6. Bederska-Łojewska, D. and M. Pieszka. 2011. Modulating gastrointestinal microflora of pigs through nutrition using feed additives. Ann. Anim. Sci. 11:333-355.
  7. Bentala, H., W. R. Verweij, A. Huizinga-Van der Vlag, A. M. van Loenen-Weemaes, D. K. Meijer, and K. Poelstra. 2002. Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock. 18:561-566. https://doi.org/10.1097/00024382-200212000-00013
  8. Berkes, J., V. K. Viswanathan, S. D. Savkovic, and G. Hecht. 2003. Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut. 52:439-451. https://doi.org/10.1136/gut.52.3.439
  9. Beumer, C., M. Wulferink, W. Raaben, D. Fiechter, R. Brands, and W. Seinen. 2003. Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J. Pharmacol. Exp. Ther. 307:737-744. https://doi.org/10.1124/jpet.103.056606
  10. Beutler, B. and E. T. Rietschel. 2003. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3:169-176. https://doi.org/10.1038/nri1004
  11. Bevins, C. L., E. Martin-Porter, and T. Ganz. 1999. Defensins and innate host defence of the gastrointestinal tract. Gut. 45:911-915. https://doi.org/10.1136/gut.45.6.911
  12. Bol-Schoenmakers, M., D. Fiechter, W. Raaben, I. Hassing, R. Bleumink, D. Kruijswijk, K. Maijoor, M. Tersteeg-Zijderveld, R. Brands, and R. Pieters. 2010. Intestinal alkaline phosphatase contributes to the reduction of severe intestinal epithelial damage. Eur. J. Pharmacol. 633:71-77. https://doi.org/10.1016/j.ejphar.2010.01.023
  13. Brun, L. R., M. L. Brance, M. Lombarte, M. Lupo, V. E. Di Loreto, and A. Rigalli. 2014. Regulation of intestinal calcium absorption by luminal calcium content: role of intestinal alkaline phosphatase. Mol. Nutr. Food. Res. 58:1546-1551. https://doi.org/10.1002/mnfr.201300686
  14. Burkey, T. E., K. A. Skjolaas, and J. E. Minton. 2009. Board-invited review: porcine mucosal immunity of the gastrointestinal tract. J. Anim. Sci. 87:1493-1501. https://doi.org/10.2527/jas.2008-1330
  15. Cario, E. 2005. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut. 54:1182-1193. https://doi.org/10.1136/gut.2004.062794
  16. Chen, K. T., M. S. Malo, A. K. Moss, S. Zeller, P. Johnson, F. Ebrahimi, G. Mostafa, S. N. Alam, S. Ramasamy, H. S. Warren, E. L. Hohmann, and R. A. Hodin. 2010. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G467-G475. https://doi.org/10.1152/ajpgi.00364.2009
  17. Chen, K. T., M. S. Malo, L. K. Beasley-Topliffe, K. Poelstra, J. L. Millan, G. Mostafa, S. N. Alam, S. Ramasamy, H. S. Warren, E. L. Hohmann, and R. A. Hodin. 2011. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig. Dis. Sci. 56:1020-1027. https://doi.org/10.1007/s10620-010-1396-x
  18. de Lange, C. F. M., J. Pluske, J. Gong, and C. M. Nyachoti. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest. Sci. 134:124-134. https://doi.org/10.1016/j.livsci.2010.06.117
  19. Eisenhut, M. 2006. Changes in ion transport in inflammatory disease. J. Inflamm (Lond). 3:5. https://doi.org/10.1186/1476-9255-3-5
  20. Fairbrother, J. M., E. Nadeau, and C. L. Gyles. 2005. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 6:17-39. https://doi.org/10.1079/AHR2005105
  21. Gallois, M. and I. P. Oswald. 2008. Immunomodulators as efficient alternatives to in-feed antimicrobials in pig production. Arch. Zootech. 11:15-32.
  22. Gao, M., N. London, K. Cheng, R. Tamura, J. Jin, O. Schueler-Furman, and H. Yin. 2014. Rationally designed macrocyclic peptides as synergistic agonists of LPS-induced inflammatory response. Tetrahedron. 70:7664-7668. https://doi.org/10.1016/j.tet.2014.07.026
  23. Goldberg, R. F., W. G. Austen, Jr., X. Zhang, G. Munene, G. Mostafa, S. Biswas, M. McCormack, K. R. Eberlin, J. T. Nguyen, H. S. Tatlidede, H. S. Warren, S. Narisawa, J. L. Millán, and R. A. Hodin. 2008. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc. Natl. Acad. Sci. USA 105:3551-3556. https://doi.org/10.1073/pnas.0712140105
  24. Goldstein, D. J., C. Rogers, and H. Harris. 1982. A search for trace expression of placental-like alkaline phosphatase in non-malignant human tissues: demonstration of its occurrence in lung, cervix, testis and thymus. Clin. Chim. Acta. 125:63-75. https://doi.org/10.1016/0009-8981(82)90046-8
  25. Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, and C. M. Nyachoti. 2013. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control postweaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr (Berl). 97:207-237. https://doi.org/10.1111/j.1439-0396.2012.01284.x
  26. Howe, L. M. 2000. Novel agents in the therapy of endotoxic shock. Expert. Opin. Investig. Drugs. 9:1363-1372. https://doi.org/10.1517/13543784.9.6.1363
  27. Hu, C. H., K. Xiao, J. Song, and Z. S. Luan. 2013. Effects of zinc oxide supported on zeolite on growth performance, intestinal microflora and permeability, and cytokines expression of weaned pigs. Anim. Feed. Sci. Technol. 181:65-71. https://doi.org/10.1016/j.anifeedsci.2013.02.003
  28. Jang, I. S., Y. H. Ko, S. Y. Kang, and C. Y. Lee. 2007. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed. Sci. Technol. 134:304-315. https://doi.org/10.1016/j.anifeedsci.2006.06.009
  29. Kim, J. C., C. F. Hansen, B. P. Mullan, and J. R. Pluske. 2012. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed. Sci. Technol. 173:3-16. https://doi.org/10.1016/j.anifeedsci.2011.12.022
  30. Koyama, I., T. Matsunaga, T. Harada, S. Hokari, and T. Komoda. 2002. Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin. Biochem. 35:455-461. https://doi.org/10.1016/S0009-9120(02)00330-2
  31. Lackeyram, D., C. Yang, T. Archbold, K. C. Swanson, and M. Z. Fan. 2010. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J. Nutr. 140:461-468. https://doi.org/10.3945/jn.109.117267
  32. Lalles, J. P. 2010. Intestinal alkaline phosphatase: Multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr. Rev. 68:323-332. https://doi.org/10.1111/j.1753-4887.2010.00292.x
  33. Lalles, J. P. 2014. Intestinal alkaline phosphatase: Novel functions and protective effects. Nutr. Rev. 72:82-94. https://doi.org/10.1111/nure.12082
  34. Levkut, M., A. Marcin, V. Revajova, L. Lenhardt, I. Danielovic, J. Hecl, J. Blanár, M. Levkutova, and J. Pistl. 2011. Influence of oregano extract on the intestine, some plasma parameters and growth performance in chickens. Acta. Vet. Brno. 61:215-225. https://doi.org/10.2298/AVB1103215L
  35. Levkut, M., A. L. Marcin, L. Lenhardt, P. Porvaz, V. Revajova, B. Soltysova, J. Blanar, Z. Sevcikova, and J. Pistl. 2010. Effect of sage extract on alkaline phosphatase, enterocyte proliferative activity and growth performance in chickens. Acta. Vet. Brno. 79:177-183. https://doi.org/10.2754/avb201079020177
  36. Li, X., J. Yin, D. Li, X. Chen, J. Zang, and X. Zhou. 2006. Dietary supplementation with zinc oxide increases Igf-I and Igf-I receptor gene expression in the small intestine of weanling piglets. J. Nutr. 136:1786-1791. https://doi.org/10.1093/jn/136.7.1786
  37. Malo, M. S., O. Moaven, N. Muhammad, B. Biswas, S. N. Alam, K. P. Economopoulos, S. S. Gul, S. R. Hamarneh, N. S. Malo, A. Teshager, M. M. Mohamed, Q. Tao, S. Narisawa, J. L. Millan, E. L. Hohmann, H. S. Warren, S. C. Robson, and R. A. Hodin. 2014. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am. J. Physiol. Gastrointest. Liver. Physiol. 306:G826-G838. https://doi.org/10.1152/ajpgi.00357.2013
  38. Malo, M. S., S. Biswas, M. A. Abedrapo, L. Yeh, A. Chen, and R. A. Hodin. 2006. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA. Cell. Biol. 25:684-695. https://doi.org/10.1089/dna.2006.25.684
  39. Martin, L., R. Pieper, N. Schunter, W. Vahjen, and J. Zentek. 2013. Performance, organ zinc concentration, jejunal brush border membrane enzyme activities and mRNA expression in piglets fed with different levels of dietary zinc. Arch. Anim. Nutr. 67:248-261. https://doi.org/10.1080/1745039X.2013.801138
  40. Martinez-Moya, P., M. Ortega-Gonzalez, R. Gonzalez, A. Anzola, B. Ocon, C. Hernandez-Chirlaque, R. Lopez-Posadas, M. D. Suarez, A. Zarzuelo, O. Martinez-Augustin, and F. Sanchez de Medina. 2012. Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol. Res. 66:144-153. https://doi.org/10.1016/j.phrs.2012.04.006
  41. McGhee, J. R., M. E. Lamm, and W. Strober. 1999. Mucosal immune responses: an overview. In: Mucosal Immunology, 2nd Ed. (Eds. P. L. Ogra, J. Mestecky, and M. E. Lamm). Academic Press, San Diego, CA, USA. pp. 485-506.
  42. Moss, A. K., S. R. Hamarneh, M. M. Mohamed, S. Ramasamy, H. Yammine, P. Patel, K. Kaliannan, S. N. Alam, N. Muhammad, O. Moaven, A. Teshager, N. S. Malo, S. Narisawa, J. L. Millán, H. S. Warren, E. Hohmann, M. S. Malo, and R. A. Hodin. 2013. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am. J. Physiol. Gastrointest. Liver. Physiol. 304:G597-604. https://doi.org/10.1152/ajpgi.00455.2012
  43. Mussa, T., M. Ballester, E. Silva-Campa, M. Baratelli, N. Busquets, M. P. Lecours, J. Dominguez, M. Amadori, L. Fraile, J. Hernandez, and M. Montoya. 2013. Swine, human or avian influenza viruses differentially activates porcine dendritic cells cytokine profile. Vet. Immunol. Immunopathol. 154:25-35. https://doi.org/10.1016/j.vetimm.2013.04.004
  44. Oshiumi, H., M. Matsumoto, K. Funami, T. Akazawa, and T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4:161-167. https://doi.org/10.1038/ni886
  45. Perez, R., F. Stevenson, J. Johnson, M. Morgan, K. Erickson, N. E. Hubbard, L. Morand, S. Rudich, S. Katznelson, and J. B. German. 1998. Sodium butyrate upregulates Kupffer cell PGE2 production and modulates immune function. J. Surg. Res. 78:1-6. https://doi.org/10.1006/jsre.1998.5316
  46. Pie, S., J. P. Lalles, F. Blazy, J. Laffitte, B. Seve, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134:641-647. https://doi.org/10.1093/jn/134.3.641
  47. Poelstra, K., W. W. Bakker, P. A. Klok, J. A. Kamps, M. J. Hardonk, and D. K. Meijer. 1997a. Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am. J. Pathol. 151:1163-1169.
  48. Poelstra, K., W. W. Bakker, P. A. Klok, M. J. Hardonk, and D. K. Meijer. 1997b. A physiologic function for alkaline phosphatase: endotoxin detoxification. Lab. Invest. 76:319-327.
  49. Prakash, U. N. and K. Srinivasan. 2010. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. Br. J. Nutr. 104:31-39. https://doi.org/10.1017/S0007114510000334
  50. Roselli, M., A. Finamore, I. Garaguso, M. S. Britti, and E. Mengheri. 2003. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J. Nutr. 133:4077-4082. https://doi.org/10.1093/jn/133.12.4077
  51. Sang, Y., J. Yang, C. R. Ross, R. R. Rowland, and F. Blecha. 2008. Molecular identification and functional expression of porcine Toll-like receptor (TLR) 3 and TLR7. Vet. Immunol. Immunopathol. 125:162-167. https://doi.org/10.1016/j.vetimm.2008.04.017
  52. Shelton, N. W., M. D. Tokach, J. L. Nelssen, R. D. Goodband, S. S. Dritz, J. M. DeRouchey, and G. M. Hill. 2011. Effects of copper sulfate, tri-basic copper chloride, and zinc oxide on weanling pig performance. J. Anim. Sci. 89:2440-2451. https://doi.org/10.2527/jas.2010-3432
  53. Shimosato, T., M. Tohno, H. Kitazawa, S. Katoh, K. Watanabe, Y. Kawai, H. Aso, T. Yamaguchi, and T. Saito. 2005. Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer's patches. Immunol. Lett. 98:83-89. https://doi.org/10.1016/j.imlet.2004.10.026
  54. Shinkai, H., M. Tanaka, T. Morozumi, T. Eguchi-Ogawa, N. Okumura, Y. Muneta, T. Awata, and H. Uenishi. 2006a. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 58:324-330. https://doi.org/10.1007/s00251-005-0068-z
  55. Shinkai, H., Y. Muneta, K. Suzuki, T. Eguchi-Ogawa, T. Awata, and H. Uenishi. 2006b. Porcine Toll-like receptor 1, 6, and 10 genes: complete sequencing of genomic region and expression analysis. Mol. Immunol. 43:1474-1480. https://doi.org/10.1016/j.molimm.2005.09.006
  56. Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. Rivier, A. T. Blikslager, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver. Physiol. 298:G352-G363. https://doi.org/10.1152/ajpgi.00081.2009
  57. Sussman, N. L., R. Eliakim, D. Rubin, D. H. Perlmutter, K. DeSchryver-Kecskemeti, and D. H. Alpers. 1989. Intestinal alkaline phosphatase is secreted bidirectionally from villous enterocytes. Am. J. Physiol. 257(1 Pt 1):G14-G23.
  58. Takeda, K., and S. Akira. 2004. TLR signaling pathways. Semin. Immunol. 16:3-9. https://doi.org/10.1016/j.smim.2003.10.003
  59. Taras, D., W. Vahjen, M. Macha, and O. Simon. 2006. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J. Anim. Sci. 84:608-617. https://doi.org/10.2527/2006.843608x
  60. Tohno, M., T. Shimosato, H. Kitazawa, S. Katoh, I. D. Iliev, T. Kimura, Y. Kawai, K. Watanabe, H. Aso, T. Yamaguchi, and T. Saito. 2005. Toll-like receptor 2 is expressed on the intestinal M cells in swine. Biochem. Biophys. Res. Commun. 330:547-554. https://doi.org/10.1016/j.bbrc.2005.03.017
  61. Tohno, M., T. Shimosato, M. Moue, H. Aso, K. Watanabe, Y. Kawai, T. Yamaguchi, T. Saito, and H. Kitazawa. 2006. Toll-like receptor 2 and 9 are expressed and functional in gutassociated lymphoid tissues of presuckling newborn swine. Vet. Res. 37:791-812. https://doi.org/10.1051/vetres:2006036
  62. Tucci, F. M., M. C. Thomaz, L. S. O. Nakaghi, M. I. Hannas, A. J. Scandolera, and F. E. L. Budino. 2011. The effect of the addition of trofic agents in weaned piglet diets over the structure and ultra-structure of small intestine and over performance. Arq. Bras. Med. Vet. Zootec. 63:931-940. https://doi.org/10.1590/S0102-09352011000400019
  63. Tuin, A., A. Huizinga-Van der Vlag, A. M. van Loenen-Weemaes, D. K. Meijer, and K. Poelstra. 2006. On the role and fate of LPS-dephosphorylating activity in the rat liver. Am. J. Physiol. Gastrointest. Liver. Physiol. 290:G377-G385. https://doi.org/10.1152/ajpgi.00147.2005
  64. Uenishi, H. and H. Shinkai. 2009. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 33:353-361. https://doi.org/10.1016/j.dci.2008.06.001
  65. Uysal, G., A. Sökmen, and S. Vidinlisan. 2000. Clinical risk factors for fatal diarrhea in hospitalized children. Indian. J. Pediatr. 67:329-333. https://doi.org/10.1007/BF02820679
  66. Vaishnava, S. and L. V. Hooper. 2007. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell. Host. Microbe. 2:365-367. https://doi.org/10.1016/j.chom.2007.11.004
  67. van Veen, S. Q., A. K. van Vliet, M. Wulferink, R. Brands, M. A. Boermeester, and T. M. van Gulik. 2005. Bovine intestinal alkaline phosphatase attenuates the inflammatory response in secondary peritonitis in mice. Infect. Immun. 73:4309-4314. https://doi.org/10.1128/IAI.73.7.4309-4314.2005
  68. Weber, T. E. and B. J. Kerr. 2008. Effect of sodium butyrate on growth performance and response to lipopolysaccharide in weanling pigs. J. Anim. Sci. 86:442-450. https://doi.org/10.2527/jas.2007-0499
  69. Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, and S. Akira. 2002. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169:6668-6672. https://doi.org/10.4049/jimmunol.169.12.6668
  70. Zhang, L., J. Liu, J. Bai, X. Wang, Y. Li, and P. Jiang. 2013. Comparative expression of Toll-like receptors and inflammatory cytokines in pigs infected with different virulent porcine reproductive and respiratory syndrome virus isolates. Virol. J. 10:135. https://doi.org/10.1186/1743-422X-10-135

Cited by

  1. Microbiota-host interplay at the gut epithelial level, health and nutrition vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0123-7
  2. Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings pp.09312439, 2017, https://doi.org/10.1111/jpn.12724
  3. Gene expression and morphological changes in the intestinal mucosa associated with increased permeability induced by short-term fasting in chickens pp.09312439, 2017, https://doi.org/10.1111/jpn.12808
  4. Effects of Probiotic Bacillus as an Alternative of Antibiotics on Digestive Enzymes Activity and Intestinal Integrity of Piglets vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02427
  5. Innovative drugs, chemicals, and enzymes within the animal production chain vol.49, pp.1, 2018, https://doi.org/10.1186/s13567-018-0559-1
  6. Dietary Zinc and Fibre Source can Influence the Mineral and Antioxidant Status of Piglets vol.9, pp.8, 2016, https://doi.org/10.3390/ani9080497
  7. Associations between vitamin D, systemic inflammation and synbiotic supplementation: secondary study from a randomized clinical trial vol.45, pp.1, 2016, https://doi.org/10.1186/s41110-019-0104-7
  8. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune r vol.125, pp.5, 2021, https://doi.org/10.1017/s0007114520002755
  9. Isolation, Identification and Function of Pichia anomala AR2016 and Its Effects on the Growth and Health of Weaned Pigs vol.11, pp.4, 2016, https://doi.org/10.3390/ani11041179
  10. The Role of Dietary and Microbial Fatty Acids in the Control of Inflammation in Neonatal Piglets vol.11, pp.10, 2021, https://doi.org/10.3390/ani11102781