DOI QR코드

DOI QR Code

Wave Simulation for Submarine Cable Route of Southwest Sea Offshore Wind Farm Using the SWAN Model

SWAN 모델을 이용한 서남해 해상풍력단지 해저케이블 경과지의 파랑 수치모의

  • Received : 2015.08.07
  • Accepted : 2015.10.27
  • Published : 2015.10.31

Abstract

Submarine cable installation is essentials for grid connection between existing power grid and newly produced electricity which will be from offshore wind farm in Southwest sea area of Korea. Especially, submarine cable route and protection method is designed in order to ensure the economical efficiency, workability and stability of submarine cable installation. On this paper, we will give the basic information about the submarine cable route and protection method of offshore wind farm which will be built in Southwest sea area of Korea. For this, we have a numerical simulation at high and low tide based on the third-generation wave model SWAN(Simulating WAves Nearshore) using the long term wave data from Korea Institute of Ocean Science and Technology(KIOST). The results of the study, year mean Hs is 1.03m, Tz is 4.47s and dominant wave direction is NW and SSW When the incident wave direction is NW(Hs: 7.0 m, Tp: 11.76s), the distribution of shallow water design wave height Hs was calculated about 4.0~5.0m at high tide and 2.0~3.0m at low tide. When the incident wave direction is SSW(Hs: 5.84 m, Tp: 11.15s), the distribution of shallow water design wave height Hs was calculated about 3.5~4.5m at high tide and 1.5~2.5m at low tide. The wave direction on a dominant influence in the section of longitude UTM 249749~251349(about 1.6 km) and UTM 251549~267749(about 16.2 km) in the submarine cable route are each NW and SSW. Prominently, wave focusing phenomenon appears between Wi-do and Hawangdeung-do, in this sea area is showing a relatively high wave hight than the surrounding sea areas.

우리나라 서남해역에서 추진될 해상풍력 발전 단지에서 생산된 전기와 기존의 전력망과의 계통연계를 위해서는 해저케이블 설치가 필수적인 요소이다. 특히 해저케이블 설치에 대한 경제성, 시공성 및 안정성 확보를 위해서는 해저케이블 경과지와 해저케이블 보호공법 설계가 이루어져야한다. 본 논문에서는 1979년부터 2002년까지 한국해양과학기술원에서 구축한 장기 파랑산출자료와 제3세대 파랑 모델인 SWAN(Simulating WAves Nearshore)을 이용하여 해상풍력단지가 조성될 해역에 대해 만조와 간조시 파랑시뮬레이션을 수행하여 해저케이블 경과지와 보호공법 설계를 위한 기초자료를 제공하고자 하였다. 연구결과, 서남해 해상풍력단지가 조성될 해역의 연평균 Hs는 1.03 m, Tz는 4.47s이고, 주파향은 북서(NW)와 남남서(SSW) 방향이다. NW에서 입사되는 조건(Hs: 7.0 m, Tp: 11.76s)에서 만조시 천해설계파랑 Hs의 분포는 약 4.0~5.0 m, 간조시에 약 2.0~3.0 m로 계산되었다. SSW에서 입사되는 조건(Hs: 5.84 m, Tp: 11.15s)에서 만조시 천해설계파랑 Hs의 분포는 약 3.5~4.5 m이고, 간조시에는 약 1.5~2.5 m로 계산되었다. 해저케이블 경과지 중 경도 UTM 249749~251349 구간 약 1.6 km에서는 NW로 입사되는 파랑의 영향이 크며, UTM 251549~267749 구간 약 16.2 km에서는 SSW로 입사되는 파랑의 영향이 지배적이다. 파랑집중 현상이 두드러지게 나타나는 해역은 위도와 하왕등도 사이 해역으로, 이 해역에서는 주변해역 보다 상대적으로 높은 파고를 나타내고 있다.

Keywords

References

  1. Ahn, S. H. and D. S. Kim(2009), Submarine Cable Installation and Protection Methods according as Characteristics of Ocean Environment, Journal of the Korean Society of Marine Environment & Safety, Vol 15, No 1, pp 25-32.
  2. Booij, N., R. C. Ris and L. H. Holthuijsen(1999), A Third-Generation Wave Model for Coastal Regions, Part I. Model Description and Validation, Journal of the Geophysical Research, Vol. 104, C4, pp. 7649-7666. https://doi.org/10.1029/98JC02622
  3. Carter, D. J. T(1982), Prediction Wave Height and Period for a constant Wind Velocity using the JONSWAP Results, Journal of the Ocean Engineering, Vol. 9, pp. 17-33. https://doi.org/10.1016/0029-8018(82)90042-7
  4. Hwang, S. B., S. H. Ahn, K. W. Park, J. H. Do and H. J. Ryu(2012), Study on Submarine Cable Protection Facility for Grid Connection of Wave Power Generation Plant, The Korea Association of Ocean Science and Technology Societies, pp. 2376-2382.
  5. Kim, D. H.(2011), Korea Offshore Wind Power Feasibility Study and Strategy, Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 24, No. 3, pp. 13-20.
  6. Lee, D. Y., K. C. Jun, S. H. Kang, K. S. Park, S. I. Kim, J. S. Shim and P. S. Chu(2005), The Estimation Report of Deep Sea Design Wave around Korea Sea Area, Korea Ocean Research & Development Institute, p. 154.
  7. Ministry of Knowledge Economy(2008), 2030 National Energy Basic Plan, p. 179.
  8. Ris, R. C., N. Booij and L. H. Holthuijsen(1999), A Third-Generation Wave Model for Coastal Regions, Part II. Verification, Journal of the Geophysical Research, Vol. 104, C4, pp. 7667-7681. https://doi.org/10.1029/1998JC900123
  9. Ryu, H. J., K. Y. Hong, S. H. Shin, S. H. Kim and Y. D. Kim(2011), Study on Analysis of Wave energy Resources and Wave Energy Density Map of the Korean Sea area, The Korea Association of Ocean Science and Technology Societies, pp. 1464-1468.
  10. Ryu, M. S., K. S. Kang, J. S. Lee and J. Y. Kim(2010), Strategy for Domestic Offshore Wind Power Development based on the Analysis of Natural Resources and Technology Level, Journal of The Korean Society for New and Renewable Energy, Vol. 6, No. 1, pp. 20-28.
  11. Yoo, J. H.(2010), Offshore Wind Farm Road Map, Journal of electrical world, No. 408, pp. 56-59.