References
- Yang, X. E., Wu, X., Hao, H. L. and He, Z. L., "Mechanisms and assessment of water eutrophication". J. Zhejiang Univ.-Sci. B, 9(3), pp. 197-209. (2008). https://doi.org/10.1631/jzus.B0710626
- Bishop, M. J., Powers, S. P., Porter, H. J. and Peterson, C. H., "Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development". Estuar. Coast. Shelf Sci., 70(3), pp. 415-422. (2006). https://doi.org/10.1016/j.ecss.2006.06.031
- Mainstone, C. P. and Parr, W., "Phosphorus in rivers—ecology and management". Sci. Total Environ., 282, pp. 25-47. (2002).
- Zhao, S. C., "Mechanisms of Lake Eutrophication and technologies for controlling in China". Adv. Earth Sci., 19(1), pp. 138-140. (2004).
- Carpenter, S. R., "Eutrophication of aquatic ecosystems: bistability and soil phosphorus". in Proceedings of Natl. Acad. Sci. U. S. A., 102(29), pp. 10002-10005. (2005).
- Withers, P. J. A., Neal, C., Jarvie, H. P. and Doody, D. G., "Agriculture and eutrophication: Where do we go from here?". Sustainability, 6(9), pp. 5853--875. (2014). https://doi.org/10.3390/su6095853
- Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N. and Smith, V. H., "Nonpoint pollution of surface waters with phosphorus and nitrogen". Ecol. Applic., 8(3), pp. 559-568. (1998). https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
- Bennett, E. M., Carpenter, S. R. and Caraco, N. F., "Human impact on erodable phosphorus and eutrophication: a global perspective increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication". BioScience, 51(3), pp. 227-234. (2001). https://doi.org/10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2
- Abe, K. and Ozaki, Y., "Comparison of useful terrestrial and aquatic plant species for removal of nitrogen and phosphorus from domestic wastewater". Soil Sci. Plant Nutr., 44(4), pp. 599-607. (1998). https://doi.org/10.1080/00380768.1998.10414483
- Seo, B. S., Park, C. M., Song, U. and Park, W. J., "Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environment". Landscape Ecol. Eng., 6(2), pp. 211-217. (2010). https://doi.org/10.1007/s11355-009-0102-7
- Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J. and Yang, X., "Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.)". Environ. Sci. Pollut. Res., 17(1), pp. 84-96. (2010). https://doi.org/10.1007/s11356-008-0094-0
- Woo, S. H., "Biochar for soil carbon sequestration", Clean techn., 3, pp. 201-211. (2013).
- Zeng, Z., Zhang S. D., Li, T. Q., Zhao, F. L., He, Z. L., Zhao, H. P., Yang, X. E., Wang, H. L., Zhao, J. and Rafiq, M. T., "Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants". Zhejiang Univ.-Sci. B, 14(12), pp. 1152-1161. (2013). https://doi.org/10.1631/jzus.B1300102
- Shin, J. D, Lee, S. I., Park, W. K., Choi, Y. S., Hong, S. G. and Park, S. W., "Carbon Sequestration in Soil Cooperated with Organic Composts and Bio-Char during Corn (Zea mays) Cultivation". J. Agri. Chem. Environ., 3(4), pp. 151--55. (2014).
- Choi, I. W., Seo, D. C., Kang, S. W., Lee, S. G., Seo, Y. J., Lim, B. J., Heo, J. S. and Cho, J. S., "Adsorption characteristics of heavy metals using sesame waste biochar", Korean J. Soil Sci. Fert., 46(1), pp. 8-15. (2013). https://doi.org/10.7745/KJSSF.2013.46.1.008
- Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P. and Cao, X. "Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass". Bioresour. Technol., 110, pp. 50--6. (2012). https://doi.org/10.1016/j.biortech.2012.01.072
- Choi, Y. S., Shin, J. D., Lee, S. I. and Kim, S. C., "Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar", Korean J. Environ. Agri., 34(3), pp. 1-6. (2015) https://doi.org/10.5338/KJEA.2015.34.1.01
- Na, C. K., Jeong, J. H. and Park, H. J., "Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(I)", J. Korea Soc. Environ. Eng., 34(4), pp. 260-269. (2011). https://doi.org/10.4491/KSEE.2012.34.4.260
- Kizito, S., Wu, S., Kirui, W. K., Lei, M., Lu, Q., Bah, H. and Dong, R., "Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry". Sci. Total Environ., 505, pp. 102-112. (2015). https://doi.org/10.1016/j.scitotenv.2014.09.096
- APHA-AWWA-WPCF, "Standard methods for the examination of water and wastewater", 14th ed., pp. 476-478. (1975)
- Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S. and Cho, J. S., "Biosorption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida". Korean J. Environ. Agri., 24(4), pp. 370-378. (2005). https://doi.org/10.5338/KJEA.2005.24.4.370
- Lee, J. J., "Study on equilibrium, kinetic and thermodynamic for adsorption of quinoline yellow by granular activated carbon", clean techn., 20(1), pp. 35-41. (2014) https://doi.org/10.7464/ksct.2014.20.1.035
- Hamid, S. B. A., Chowdhury, Z. Z. and Zain, S. M., "Base Catalytic Approach: A Promising Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu (II) Ions in Single Solute System". Materials, 7(4), pp. 2815-2832. (2014). https://doi.org/10.3390/ma7042815
- Shin, J. D., Lee, J. S., Kim, W. I., Jung, G. B., So, K. H., Lee, J. T. and Lee, M. S., "Run-off impact assessment of the steeped cornfield to small stream", Korea J. Environ. Agri., 24(4), pp. 334-340. (2005) https://doi.org/10.5338/KJEA.2005.24.4.334
- Xu, G., Sun, J., Shao, H. and Chang, S. X., "Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity". Ecol. Eng., 62, pp. 54-60. (2014). https://doi.org/10.1016/j.ecoleng.2013.10.027
Cited by
- Optimization of Blended Biochar Pellet by the Use of Nutrient Releasing Model vol.8, pp.11, 2018, https://doi.org/10.3390/app8112274
- 왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성 vol.39, pp.3, 2020, https://doi.org/10.5338/kjea.2020.39.3.26