DOI QR코드

DOI QR Code

Adsorption Characteristics of Aqueous Phosphate Using Biochar Derived from Oak Tree

참나무 바이오차의 인산염 인(PO4-P) 흡착특성

  • Choi, Yong-Su (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Seung-Gil (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Sung-Chul (Bio Environmental Chemistry, College of Agriculture & Life sciences, Chungnam National University) ;
  • Shin, Joung-Du (Department of Agricultural Environment, National Academy of Agricultural Science, Rural Development Administration)
  • 최용수 (국립농업과학원 농업환경부) ;
  • 홍승길 (국립농업과학원 농업환경부) ;
  • 김성철 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 신중두 (국립농업과학원 농업환경부)
  • Received : 2015.08.26
  • Accepted : 2015.09.07
  • Published : 2015.09.30

Abstract

Objective of this study was to investigate adsorption characteristics of $PO_4-P$ to biochar produced from oak tree in respective to reduce eutrophication from runoff water in the cropland. For adsorption experiment, input amount of biochar was varied from 4 to 20 g/L with 30 mg/L $PO_4-P$ solution. Adsorption amounts and removal rates of $PO_4-P$ was increased at 3 times in 4~14 g/L, and increased at 28.6% in 4~16 g/L, respectively. The maximum adsorption amount ($q_m$) and binding strength constant(b) were calculated as 0.10 mg/g and 0.06 L/mg, respectively. The sorption of $PO_4-P$ to biochar was fitted well by Langmuir model because it was observed that dimensionless constant($R_L$) was 0.37. It was indicated that biochar is favorably adsorbed $PO_4-P$ because this value lie within 0 < $R_L$ < 1. Therefore, biochar produced from oak tree could be used as adsorbent for reduce eutrophication from runoff water in the cropland.

본 연구의 목적은 농경지에서 유출되는 유거수로부터 부영양화를 감소시키기 위하여 참나무를 원료로 제조한 바이오차의 인산염 인($PO_4-P$) 흡착특성을 구명하는 것이었다. 30 mg/L $PO_4-P$ 용액에 참나무 바이오차 투입량을 4~20 g/L로 변화시키는 조건으로 실험을 수행하였다. $PO_4-P$의 흡착량은 4~14 g/L 범위에서 3배 증가하였고, 제거율은 4~16 g/L 범위에서 28.6% 증가하였다. 최대 단분자층 흡착능($q_m$)과 결합세기(b)는 각각 0.10 mg/g, 0.06 L/mg으로 산출되었다. 또한 Langmuir 흡착등온식의 특징인 무차원상수($R_L$)는 0.37로 0과 1사이로 나타나 Langmuir 흡착등온식을 잘 표현하여 흡착에 용이함을 알 수 있었다. 따라서, 참나무를 원료로 제조한 바이오차는 농경지 유거수로부터 부영양화를 감소시키기 위한 $PO_4-P$ 흡착제로 용이하다고 판단된다.

Keywords

References

  1. Yang, X. E., Wu, X., Hao, H. L. and He, Z. L., "Mechanisms and assessment of water eutrophication". J. Zhejiang Univ.-Sci. B, 9(3), pp. 197-209. (2008). https://doi.org/10.1631/jzus.B0710626
  2. Bishop, M. J., Powers, S. P., Porter, H. J. and Peterson, C. H., "Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development". Estuar. Coast. Shelf Sci., 70(3), pp. 415-422. (2006). https://doi.org/10.1016/j.ecss.2006.06.031
  3. Mainstone, C. P. and Parr, W., "Phosphorus in rivers—ecology and management". Sci. Total Environ., 282, pp. 25-47. (2002).
  4. Zhao, S. C., "Mechanisms of Lake Eutrophication and technologies for controlling in China". Adv. Earth Sci., 19(1), pp. 138-140. (2004).
  5. Carpenter, S. R., "Eutrophication of aquatic ecosystems: bistability and soil phosphorus". in Proceedings of Natl. Acad. Sci. U. S. A., 102(29), pp. 10002-10005. (2005).
  6. Withers, P. J. A., Neal, C., Jarvie, H. P. and Doody, D. G., "Agriculture and eutrophication: Where do we go from here?". Sustainability, 6(9), pp. 5853--875. (2014). https://doi.org/10.3390/su6095853
  7. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N. and Smith, V. H., "Nonpoint pollution of surface waters with phosphorus and nitrogen". Ecol. Applic., 8(3), pp. 559-568. (1998). https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
  8. Bennett, E. M., Carpenter, S. R. and Caraco, N. F., "Human impact on erodable phosphorus and eutrophication: a global perspective increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication". BioScience, 51(3), pp. 227-234. (2001). https://doi.org/10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2
  9. Abe, K. and Ozaki, Y., "Comparison of useful terrestrial and aquatic plant species for removal of nitrogen and phosphorus from domestic wastewater". Soil Sci. Plant Nutr., 44(4), pp. 599-607. (1998). https://doi.org/10.1080/00380768.1998.10414483
  10. Seo, B. S., Park, C. M., Song, U. and Park, W. J., "Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environment". Landscape Ecol. Eng., 6(2), pp. 211-217. (2010). https://doi.org/10.1007/s11355-009-0102-7
  11. Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J. and Yang, X., "Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.)". Environ. Sci. Pollut. Res., 17(1), pp. 84-96. (2010). https://doi.org/10.1007/s11356-008-0094-0
  12. Woo, S. H., "Biochar for soil carbon sequestration", Clean techn., 3, pp. 201-211. (2013).
  13. Zeng, Z., Zhang S. D., Li, T. Q., Zhao, F. L., He, Z. L., Zhao, H. P., Yang, X. E., Wang, H. L., Zhao, J. and Rafiq, M. T., "Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants". Zhejiang Univ.-Sci. B, 14(12), pp. 1152-1161. (2013). https://doi.org/10.1631/jzus.B1300102
  14. Shin, J. D, Lee, S. I., Park, W. K., Choi, Y. S., Hong, S. G. and Park, S. W., "Carbon Sequestration in Soil Cooperated with Organic Composts and Bio-Char during Corn (Zea mays) Cultivation". J. Agri. Chem. Environ., 3(4), pp. 151--55. (2014).
  15. Choi, I. W., Seo, D. C., Kang, S. W., Lee, S. G., Seo, Y. J., Lim, B. J., Heo, J. S. and Cho, J. S., "Adsorption characteristics of heavy metals using sesame waste biochar", Korean J. Soil Sci. Fert., 46(1), pp. 8-15. (2013). https://doi.org/10.7745/KJSSF.2013.46.1.008
  16. Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P. and Cao, X. "Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass". Bioresour. Technol., 110, pp. 50--6. (2012). https://doi.org/10.1016/j.biortech.2012.01.072
  17. Choi, Y. S., Shin, J. D., Lee, S. I. and Kim, S. C., "Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar", Korean J. Environ. Agri., 34(3), pp. 1-6. (2015) https://doi.org/10.5338/KJEA.2015.34.1.01
  18. Na, C. K., Jeong, J. H. and Park, H. J., "Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(I)", J. Korea Soc. Environ. Eng., 34(4), pp. 260-269. (2011). https://doi.org/10.4491/KSEE.2012.34.4.260
  19. Kizito, S., Wu, S., Kirui, W. K., Lei, M., Lu, Q., Bah, H. and Dong, R., "Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry". Sci. Total Environ., 505, pp. 102-112. (2015). https://doi.org/10.1016/j.scitotenv.2014.09.096
  20. APHA-AWWA-WPCF, "Standard methods for the examination of water and wastewater", 14th ed., pp. 476-478. (1975)
  21. Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S. and Cho, J. S., "Biosorption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida". Korean J. Environ. Agri., 24(4), pp. 370-378. (2005). https://doi.org/10.5338/KJEA.2005.24.4.370
  22. Lee, J. J., "Study on equilibrium, kinetic and thermodynamic for adsorption of quinoline yellow by granular activated carbon", clean techn., 20(1), pp. 35-41. (2014) https://doi.org/10.7464/ksct.2014.20.1.035
  23. Hamid, S. B. A., Chowdhury, Z. Z. and Zain, S. M., "Base Catalytic Approach: A Promising Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu (II) Ions in Single Solute System". Materials, 7(4), pp. 2815-2832. (2014). https://doi.org/10.3390/ma7042815
  24. Shin, J. D., Lee, J. S., Kim, W. I., Jung, G. B., So, K. H., Lee, J. T. and Lee, M. S., "Run-off impact assessment of the steeped cornfield to small stream", Korea J. Environ. Agri., 24(4), pp. 334-340. (2005) https://doi.org/10.5338/KJEA.2005.24.4.334
  25. Xu, G., Sun, J., Shao, H. and Chang, S. X., "Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity". Ecol. Eng., 62, pp. 54-60. (2014). https://doi.org/10.1016/j.ecoleng.2013.10.027

Cited by

  1. Optimization of Blended Biochar Pellet by the Use of Nutrient Releasing Model vol.8, pp.11, 2018, https://doi.org/10.3390/app8112274
  2. 왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성 vol.39, pp.3, 2020, https://doi.org/10.5338/kjea.2020.39.3.26