DOI QR코드

DOI QR Code

Glucose-Insulin-Potassium Solution Protects Ventricular Myocytes of Neonatal Rat in an In Vitro Coverslip Ischemia/Reperfusion Model

  • Chun, Woo-Jung (Division of Cardiology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University, College of Medicine) ;
  • Nah, Deuk-Young (Division of Cardiology, Department of Internal Medicine, College of Medicine, Dongguk University) ;
  • Bae, Jun-Ho (Division of Cardiology, Department of Internal Medicine, College of Medicine, Dongguk University) ;
  • Chung, Jin-Wook (Division of Cardiology, Department of Internal Medicine, College of Medicine, Dongguk University) ;
  • Lee, HyunSook (Department of Anatomy, Dongguk Medical Institute, College of Medicine, Dongguk University) ;
  • Moon, Il Soo (Department of Anatomy, Dongguk Medical Institute, College of Medicine, Dongguk University)
  • Received : 2013.07.02
  • Accepted : 2015.03.09
  • Published : 2015.05.30

Abstract

Background and Objectives: The benefit of high glucose-insulin-potassium (GIK) solution in clinical applications is controversial. We established a neonatal rat ventricular myocyte (NRVM) in vitro coverslip ischemia/reperfusion (I/R) model and investigated the effects of GIK solution on suppressing reactive oxygen species (ROS) and upregulating O-GlcNacylation, which protects cells from ischemic injury. Materials and Methods: NRVMs were isolated from postnatal day 3-4 Sprague-Dawley rat pups and grown in Dulbecco's modified Eagle's medium containing high glucose (4.5 g/L), fetal bovine serum, and penicillin/streptomycin. The effects of the GIK solution on ROS production, apoptosis, and expression of O-GlcNAc and O-GlcNAc transferase (OGT) were investigated in the coverslip I/R model. Results: Covering the 24-well culture plates for 3 hr with 12 mm diameter coverslips resulted in the appropriate ischemic shock. Glucose and insulin synergistically reduced ROS production, protected NRVM dose-dependently from apoptosis, and altered O-GlcNAc and OGT expression. Conclusion: The high GIK solution protected NRVM from I/R injury in vitro by reducing ROS and altering O-GlcNacylation.

Keywords

Acknowledgement

Supported by : The Korean Society of Cardiology

References

  1. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357:1121-35. https://doi.org/10.1056/NEJMra071667
  2. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36. https://doi.org/10.1161/01.CIR.74.5.1124
  3. Thibault H, Angoulvant D, Bergerot C, Ovize M. Postconditioning the human heart. Heart Metab 2007;37:19-22.
  4. Jovic M, Gradinac S, Lausevic-Vuk L, et al. Preconditioning with glucose- insulin-potassium solution and restoration of myocardial function during coronary surgery. Gen Physiol Biophys 2009;28:262-70.
  5. Sodi-Pallares D, Testelli MR, Fishleder BL, et al. Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol 1962;9:166-81. https://doi.org/10.1016/0002-9149(62)90035-8
  6. Apstein CS, Taegtmeyer H. Glucose-insulin-potassium in acute myocardial infarction: the time has come for a large, prospective trial. Circulation 1997;96:1074-7. https://doi.org/10.1161/01.CIR.96.4.1074
  7. Oliver EMF, Opie LH. Effects of glucose and fatty acids on myocardial ischemia and arrhythmias. Lancet 1994;343:155-8. https://doi.org/10.1016/S0140-6736(94)90939-3
  8. Obeid AI, Varrier RL, Lown B. Influence of glucose, insulin, and potassium on vulnerability to ventricular fibrillation in the canine heart. Circ Res 1978;43:601-8. https://doi.org/10.1161/01.RES.43.4.601
  9. Cave AC, Ingwall JS, Friedrich J, Liao R, Saupe KW, Apstein CS, Eberli FR. ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate. Circulation 2000;101:2090-6. https://doi.org/10.1161/01.CIR.101.17.2090
  10. Brown MJ, Brown DC, Murphy MB. Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med 1983;309:1414-9. https://doi.org/10.1056/NEJM198312083092303
  11. Oliver MF, Kurien VA, Greenwood TW. Relation between serum-freefatty acids and arrhythmias and death after acute myocardial infarction. Lancet 1968;1:710-4.
  12. Ji L, Fu F, Zhang L, et al. Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress. Am J Physiol Endocrinol Metab 2010;298:E871-80. https://doi.org/10.1152/ajpendo.00623.2009
  13. Krljanac G, Vasiljević Z, Radovanović M, et al. Effects of glucose-insulin- potassium infusion on ST-elevation myocardial infarction in patients treated with thrombolytic therapy. Am J Cardiol 2005;96:1053-8. https://doi.org/10.1016/j.amjcard.2005.05.068
  14. Yusuf S, Mehta SR, Diaz R, et al. Challenges in the conduct of large simple trials of important generic questions in resource-poor settings: the CREATE and ECLA trial program evaluating GIK (glucose, insulin and potassium) and low-molecular-weight heparin in acute myocardial infarction. Am Heart J 2004;148:1068-78. https://doi.org/10.1016/j.ahj.2004.08.033
  15. Mehta SR, Yusuf S, Diaz R, et al. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. JAMA 2005;293:437-46. https://doi.org/10.1001/jama.293.4.437
  16. Rasoul S, Ottervanger JP, Timmer JR, et al. One year outcomes after glucose-insulin-potassium in ST elevation myocardial infarction. The Glucose-insulin-potassium study II. Int J Cardiol 2007;122:52-5. https://doi.org/10.1016/j.ijcard.2006.11.037
  17. Diaz R, Goyal A, Mehta SR, et al. Glucose-insulin-potassium therapy in patients with ST-segment elevation myocardial infarction. JAMA 2007;298:2399-405. https://doi.org/10.1001/jama.298.20.2399
  18. Hart GW, Kreppel LK, Comer FI, et al. O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 1996;6:711-6. https://doi.org/10.1093/glycob/6.7.711
  19. Zachara NE, O'Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 2004;279:30133-42. https://doi.org/10.1074/jbc.M403773200
  20. Howell NJ, Ashrafian H, Drury NE, et al. Glucose-insulin-potassium reduces the incidence of low cardiac output episodes after aortic valve replacement for aortic stenosis in patients with left ventricular hypertrophy: results from the Hypertrophy, Insulin, Glucose and Electrolytes (HINGE) trial. Circulation 2011;123:170-7. https://doi.org/10.1161/CIRCULATIONAHA.110.945170
  21. Pitts KR, Toombs CF. Coverslip hypoxia: a novel method for studying cardiac myocyte hypoxia and ischemia in vitro. Am J Physiol Heart Circ Physiol 2004;287:H1801-12. https://doi.org/10.1152/ajpheart.00232.2004
  22. Rohr S, Schölly DM, Kléber AG. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization. Circ Res 1991;68:114-30. https://doi.org/10.1161/01.RES.68.1.114
  23. Moon IS, Cho SJ, Jin I, Walikonis R. A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol Cells 2007;24:76-82.
  24. Grossman AN, Opie LH, Beshansky JR, Ingwall JS, Rackley CE, Selker HP. Glucose-insulin-potassium revived: current status in acute coronary syndromes and the energy-depleted heart. Circulation 2013;127:1040-8. https://doi.org/10.1161/CIRCULATIONAHA.112.130625
  25. Carbó R, Nava P, Guarner V. Effects of polarizing solution on glucose uptake of rat oxygenated or hypoxic ventricular myocytes. Clin Exp Pharmacol Physiol 2003;30:64-71. https://doi.org/10.1046/j.1440-1681.2003.03792.x
  26. Laybutt DR, Thompson AL, Cooney GJ, Kraegen EW. Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose and lipid in rat cardiac muscle in vivo. Am J Physiol 1997;273:H1309-16.
  27. Darley-Usmar VM, Ball LE, Chatham JC. Protein O-linked ${\beta}$-Nacetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 2012;52:538-49. https://doi.org/10.1016/j.yjmcc.2011.08.009
  28. Champattanachai V, Marchase RB, Chatham JC. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol 2007;292:C178-87. https://doi.org/10.1152/ajpcell.00162.2006
  29. Ngoh GA, Watson LJ, Facundo HT, Dillmann W, Jones SP. Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol 2008;45:313-25. https://doi.org/10.1016/j.yjmcc.2008.04.009
  30. Ngoh GA, Facundo HT, Hamid T, Dillmann W, Zachara NE, Jones SP. Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ Res 2009;104:41-9.

Cited by

  1. Roles of Glycoproteins in the Diagnosis and Differential Diagnosis of Chronic and Latent Keshan Disease vol.22, pp.5, 2017, https://doi.org/10.3390/molecules22050746
  2. The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury vol.20, pp.2, 2015, https://doi.org/10.3390/ijms20020404
  3. Getting an Early Start in Understanding Perinatal Asphyxia Impact on the Cardiovascular System vol.8, pp.None, 2020, https://doi.org/10.3389/fped.2020.00068
  4. Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology vol.101, pp.2, 2015, https://doi.org/10.1152/physrev.00043.2019