• Title/Summary/Keyword: GlcNAc

Search Result 112, Processing Time 0.037 seconds

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.

The Potential 'O-GlcNAc-P'om' ('O-GlcNAc-P'om'의 존재 가능성)

  • Moon, Il Soo;Lee, HyunSook;Lee, Hyung Jong
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.324-331
    • /
    • 2013
  • The addition and removal of N-acetylglucosamine (GlcNAc) molecules on serine or threonine residues of a protein is called O-GlcNAcylation. This post-translational modification occurs on both cytoplasmic and nuclear protein, and is fast and reversible as comparable to phosphorylation. In contrast to the phospho-signaling cycles, this emerging moon-lightening signaling is cycled by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The simple machinery is a good evolutionary adaptation of a cell for quick accommodation to continuously fluctuating intra- and extracellular microenvironments. Rather than "switching" on or off a specific proteins - this would be done by phosphorylation where numerous specific kinases and phosphatases are involved - O-GlcNAcylation would play a "rheostat" which would be much more delicately increase or decrease the efficacy of signal transductions in response to cellular nutrient and stress conditions. Interestingly, recent evidence indicates that O-GlcNAc is further modified by phosphorylation. The O-GlcNAc-P will upgrade the modulation efficiency of cellular processes to continuous 'analogue' level. So far, only one protein AP180 was reported to have O-GlcNAc-P on Thr310. But, proteomic data from our laboratory indicate that there are multiple O-GlcNAc-P proteins, constituting "O-GlcNAc-P'om". This will focus on the possibility of existence of "O-GlcNAc-P'om".

Action Patterns of Chitinase and Separations of Chitooligosaccharides Produced by Chitinolytic Hydrolysis (키티나제에 의한 키토올리고당의 생성활성 규명과 올리고당의 당별 분리 생산)

  • Kim, Kwang
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.100-105
    • /
    • 2002
  • N-acetyl-D-glucosamine oligosaccharides [(GlcNAc)n] whose degree of polymer-ization is from one to ten (n=1-10) were fractionated by column chromatography on CM-Sephadex. Electro dialysis from a partially deacetylated chitosan hydrolysate prepared crudely with the N-acetyl-D-glucosaminidase(chitinase) and exo-N, N'-diacetylchito-biohydrolase(chitobiase) of Serratia marcescens QM B1466. Reducing sugar compositions and sequences of the N-acetyl-glucosamine oligosaccharides were identified by N-acetylation, randomly cleavage with chitinase and ego-splitting with chitobiase. N-acetyl-glucosamine heterochitooligosaccharides with glucosamine oligosaccharides, (GlcN)n at the reducing end residues together with $(GlcN)_1\sim(GlcN)_4$ were detected. Separation was accomplished by prefractionation with election by 0 to 1.0 M NaCl gradient solution. $(GlcNAc)_1 =4.25%,\; (GlcNAc)_2=4.49%,; (GlcNAc)_3=11.1%,\; (GlcNAc)_4=2.5%,$$ $(GlcNAc)_{5}$=0.64%, $(GlcNAc)_{6}$=2.12% and $(GlcNAc)_{7}$=1.21%, respectively, were crystallized after electrodialysis and lyophilization Each N-acetyl-D-glucosamine oligosaccharides content were detected by HPLC.

Glucosamine Hydrochloride and N-Acetylglucosamine Influence the Response of Bovine Chondrocytes to TGF-β3 and IGF in Monolayer and Three-Dimensional Tissue Culture

  • Pizzolatti, Andre Luiz A.;Gaudig, Florian;Seitz, Daniel;Roesler, Carlos R.M.;Salmoria, Gean Vitor
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.781-791
    • /
    • 2018
  • BACKGROUND: Glucosamine hydrochloride (GlcN HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. METHOD: Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) $TGF-{\beta}$ ($5ng\;mL^{-1}$) and IGF-I ($10ng\;mL^{-1}$), GlcN HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. RESULTS: The two glucosamines showed opposite effects in monolayer culture: GlcN HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. CONCLUSION: GlcN HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.

Direct synthesis of Neu5Ac from GlcNAc using NALasc and GlcNAc 2-epimerase

  • Lee, Jeong-Gyu;Lee, Jeong-O;Lee, Seon-Gu;Kim, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.210-214
    • /
    • 2001
  • GlcNAc 2-epimerase gene from human was cloned. However GIcNAc 2-epimerase was expressed in E. coli as inclusion body formation. Several approaches were tried such as expression in low temperature and low concentration of IPTG. With these treatments production of active form of human GIcNAc 2-epimerase ι ,vas enhanced. For the direct synthesis of NeuAc from GlcNAc and pyruvate, NALase and GlcNAc 2-epimerase were characterized in terms of temperature effect on activity. equilibrium and stability, inhibition by pyruvate etc. For cheap and ease preparation of both the NALase and GlcNAc 2-epimerase, pEN24ma vector was made. which express both the NALasc and GIcNAc 2-epimerase simultaneously. In addition, E. coli BL21(DE3) harboring two plasmids was also made. Of the two systems, the latter was better for the expression of both enzymes.

  • PDF

Analysis of Human O-GlcNAcase Gene and the Expression of the Recombinant Gene. (사람의 O-linked N-acetyl-$\beta$-D-glucosaminidase 유전자의 분석과 재조합 발현)

  • 강대욱;서현효
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • Dynamic modification of cytoplasmic and nuclear proteins by O-linked N-acetylglucosamine (O-GlcNAc) on Ser and Thr residues is ubiquitous in higher eukaryotes. And this modification may serve as a signaling mod-ification analogous to protein phosphorylation. Addition and cleavage of O-GlcNAc are catalyzed by O-linked GlcNAc transferase (OGT) and O-linked N-acety1glucosaminidase (O-GlcNAcase), respectively. Two types of human O-GlcNAcase gene were cloned and expressed as three fusion proteins in Escherichia coli. O-GlcNA-case activity showed in the order of thioredoxin fusion> $6{\times}His$ tag> GST fusion. O-GlcNAcase had enzy-matic activity against only ${\rho}$NP-GlcNAc of seven tested substrate analogs. Blast search revealed that O-GlcNAcase has two conserved domains, amino terminal hyaluronidase-like domain and carboxy terminal N-acetyltransferase domain. Extensive deletion studies were done to define catalytically important domains. The deletions of hyaluronidase-like domain and N-acetyltransferase domain abolished enzyme activity. But, N-ter-minal 55 amino acid deletion and C-terminal truncation showed lower activity. Based on deletion analysis, we suggest that hyaluronidase-like domain is essential for enzyme activity and carboxy terminal N-acetyltrans-ferase domain may be modulatory function.

N-Acetylglucosamine Kinase is Localized to Dendritic Lipid Rafts and Caveolae of Rat Hippocampal Neurons (흰쥐 해마신경세포 가지돌기의 lipid rafts 및 caveolae에서 N-acetylglucosamine kinase의 표현)

  • Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.955-959
    • /
    • 2006
  • A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. In this work, immunocytochemistry was carried out to investigate the subcellular expression of GlcNAc kinase (NAGK, EC 2.7.1.59) that catalyzes the phosphorylation of GlcNAc to GlcNAc 6-phosphate. Immunostainings of cultured rat hippocampal neurons revealed patchy or punctate distribution of NAGK. When NAGK is doublestained with caveolin-1 or flotillin, markers for caveolae and lipid rafts, respectively, NAGK was co-localized with these markers. These results indicate that most, if not all, of the NAGK immunopunctae represent caveolae and lipid rafts, and suggest NAGK's role in these membrane microdomains.

Production of O-GlcNAc Modified Recombinant Proteins in Escherichia coli

  • LIM, KI HONG;CHANG HOON HA;HYO IHL CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.306-311
    • /
    • 2002
  • O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslationally modified compound in eukaryotic cells. Human O-GlcNAc transferase (OGT) was produced as a maltose binding protein (MBP) fusion protein, which showed significant catalytic activity to modify recombinant Sp1, transcription factor. To facilitate the production of O-GlcNAc modified proteins, instead of using the tedious in vitro glycosylation reaction or expression in eukaryotic cells, a MBP-fusion OGT expression vector (pACYC184-MBPOGT) was constructed using pACYC184 plasmid, which could coexist with general prokaryotic expression vectors containing ColE1 origin. By cotransforming pACYC184-MBPOGT and pGEX-2T vectors into Escherichia coli BL21, intracellular O- GlcNAcylated proteins could be obtained by a simple purification procedure. It is expected that this may be a useful tool for production of O-GlcNAc modified proteins.

Interaction of Naegleria fowleri Trophozoites with Escherichia coli and MRSA by N-acetylglucosamine and Galactose

  • Son, Dae-Hyun;Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.323-328
    • /
    • 2021
  • Naegleria fowleri is a free-living amoeba causing primary amoebic encephalitis. In this study, we analyzed how the N-aceytlglucosamine (GlcNAc) and D-galactose affected the interaction between Naegleria fowleri and methicillin-resistant Staphylococcus aureus (MRSA) or Escherichia coli O157:H7, and the interaction with bacteria when monosaccharides were treated with N. fowleri for a longer pre-incubation time. When GlcNAc was treated with N. fowleri for 1 hr, the E. coli association was almost the same as that of the control not treated with GlcNAc until the concentration of GlcNAc was 25 mM. However, the E. coli association was reduced by approximately 91% with 100 mM GlcNAc. E. coli invasion into N. fowleri showed statistical significance only in the group treated with 100 mM GlcNAc. The interaction when treated with galactose showed a very different pattern in the 50 mM galactose group than when treated with GlcNAc. In the MRSA interaction, a statistically significant decrease in association (76.3% by GlcNAc and 88.7% by galactose) and invasion (3.6% by GlcNAc and 9.3% by galactose) was shown by the concentration of two 100 mM monosaccharides. The group treated with monosaccharides at the same time showed almost no difference in all interactions from the group treated with monosaccharides at the same time. Taken together, it suggested that the effect of monosaccharides on the interaction of several Gram-negative or positive bacteria and the evidence that the interaction could be enhanced by longer pre-incubation time.

The Localization of Lectin Receptors in the Tissue of the Paragonimus westermani (폐흡충조직내 Lectin(WGA) 수용체의 분포)

  • Kim, Soo-Jin;Nahm, Heun-Woo;Lee, Joon-Sang;Joo, Kyung-Whan
    • Applied Microscopy
    • /
    • v.30 no.1
    • /
    • pp.101-111
    • /
    • 2000
  • In this study, the distribution of lectin receptors in Paragonimus westermani tissue was explored using colloidal gold label complexed with lectin WGA purified from wheat germ (Triticum vulgare). The lectin WGA gold complex, shown to recognize GlcNAc (N-acetylgalactosamine) and NeuNAc (N-acetylneuraminic acid) regions, was applied to detect binding sites in Lowicryl HM 20 sections viewed under electron microscope. Labeled sections of the metacercaria revealed gold particles specifically distributed on the tegumental syncytium and lamella of the excretory canal. Labeling of young adult tissue was then quantified and compared to that of adult worm tissue. Adult worm tissue sections resulted in specific gold particle distribution on the lamella of caecal epithelium and excretory canal. These results indicate that lectin WGA receptors are located in the tegumental syncytium and lamella of the excretory canal of the metacercariae, and in the lamella of the caecum and excretory canal of the young adult and adult. Therefore, the GlcNAc and NeuNAc regions in the tegumental syncytium appear to be functionally associated with cell-recognition and protection from the immune system of the host, and linked with membrane transport and absorption of nutrients in the lamella of the excretaory canal and caecal epithelia.

  • PDF