DOI QR코드

DOI QR Code

Evaluation of Swine Wastewater Pretreatment Using Anaerobic Filter

Anaerobic Filter에 의한 양돈폐수의 전처리 특성 평가

  • Kang, Ho (Department of Environmental Engineering, Chungnam National University) ;
  • Moon, Seo-yeon (Department of Environmental Engineering, Chungnam National University)
  • 강호 (충남대학교 환경공학과) ;
  • 문서연 (충남대학교 환경공학과)
  • Received : 2015.07.01
  • Accepted : 2015.07.30
  • Published : 2015.07.31

Abstract

Anaerobic Filters (AF) packed with porous ceramic floating media were operated at different operational conditions to identify the feasibility of the renewable bioenergy, methane production from swine wastewater and to verify the suitability of effluent from anaerobic filters for the subsequent biological nitrogen and phosphorus removal. Stepwise increase in organic loading rates (OLRs) or decrease in hydraulic retention times (HRTs) with influent TCOD concentration of 14,000 mg/L were utilized at mesophilic temperature. The maximum methane productivity of 1.74 volume of $CH_4$ per volume of reactor per day (v/v-d) was achieved at an hydraulic retention time (HRT) of 0.5 day (OLR 28 g TVS/L-d). Based on the biogas production, the highest total volatile solids (TVS) removal efficiency of 63% was obtained at an HRT of 3 days (OLR 4.67 g TVS/L-d), however based on the result from the effluent total chemical oxygen demand (TCOD) analysis, the highest TCOD removal efficiency of 75% was achieved. The effluent alkalinity concentration over the range of 2,050~2,980 mg/L as $CaCO_3$ at all operational conditions, could compensate the alkalinity destruction caused by nitrification. The effluent from the anaerobic filter operated under the HRT of 2 days showed the COD/TKN ratio of 15~35 and COD/TP ratio of 38~56. Therefore effluent C/N/P ratio is able to satisfy the optimum COD/TKN ratio of greater than 8.0 and COD/TP ratio of 33 for the subsequent biological nutrient removal.

본 논문에서는 양돈폐수의 전처리 공정으로 부유성 세라믹 담체로 충진한 Anaerobic Filter (AF)을 이용하여 신재생에너지 메탄가스의 생산 가능성과 전처리 후 유출수의 후속 고도처리 적정성을 평가하였다. 유입 COD 농도가 14,000 mg/L인 양돈폐수를 Anaerobic Filter에 점진적으로 유기물부하(OLR)를 증가시키면서 혹은 수리학적 체류시간을 짧게 유지하면서 $35^{\circ}C$에서 운전한 결과는 다음과 같다. Anaerobic Filter는 HRT 0.5일(OLR 28 g TVS/L-d)에서 최대 메탄발생량 1.74 v/v-d를 달성하였으며, Biogas 기준 TVS 제거효율은 HRT 3일(OLR 4.67 g TVS/L-d)로 운전하였을 때 63%를 얻었다. 반면 유출수 분석에 의한 TCOD 제거효율은 75%를 상회하였다. 유출수의 알카리도는 모든 운전 조건에서 2,050~2,980 mg/L as $CaCO_3$로서 후속 질소제거 시 야기될 수 있는 알카리도 파괴를 상쇄할 수 있을 것이다. HRT 2일 이하의 운전조건에서 Anaerobic Filter 유출수의 COD/TKN 비는 10~35 범위로서 고도처리 시 적정비인 8 이상을 만족하였으며 COD/TP 비는 38~56범위로서 적정비 33 이상 유지가 가능하였다.

Keywords

References

  1. Ministry of Environment (ME), "Guideline for Operation Maintenance and Installment of Livestock Manure Treatment Facility," ME, Korea(2013).
  2. Kang, H., "Optimization of Maximum Biogas Production from Anaerobic Digestion of Dairy Cow Manure using Semi- Continuously Fed and Mixed Reactor (SCFMR)," Rural Res. Ins., Korea(2014).
  3. Ahn, J. W. and Lee, H. D., "A Study on Optimum Management of Livestock Wastewater," J. Korean Soc. Water Qual., 16(2), 255-264(2000).
  4. Teodorita, A. S. and Clare, L., Quality Management of Digestate from Biogas Plants Used as Fertiliser, IEA Bioenergy, pp. 4-38(2012).
  5. Won, C. H., Kwon, J. H. and Rim, J. M., "Effect of Ammonia Nitrogen Loading Rate on Anaerobic Digestion of Slurry-typed Swine Wastewater," J. Korean Organic. Resour. Recycling Assoc., 17(1) 49-57(2009).
  6. Clare, T. L., Peter, F. and Teodorita, A. S., Utilisation of Digestate from Biogas Plants as Biofertiliser," IEA Bioenergy, pp. 4-22(2010).
  7. Kim, J. S. and Seo, J. W., "Treatment of Swine Wastewater by Anaerobic Filter Bioreactors," Appl. Chem., 3(1), 189-192(1999).
  8. Kang, H., Shin, K. S., and Richards, B., "Determination of Ultimate Biodegradability and Multiple Decay Rate Coefficients in Anaerobic Batch Degradation of Organic Wastes," J. Korean Soc. Environ. Eng., 27(5), 555-601(2005).
  9. Kang, H., Jeong, K. H., Jeong, J. H., Kim, S. W. and Ahn, H. K., "Anaerobic Ultimate Biodegradability and Multiple Decay Rates of Dairy Cow Manure," J. Korean Soc. Waste Manage., 31(8), 833-842(2014). https://doi.org/10.9786/kswm.2014.31.8.833
  10. Jeong, K. H., Kang, H., Jeong, J. H., Kim, S. W. and Ahn, H. K., "Biogas Production from Dairy Cow Manure using Semi-Continuously Fed and Mixed Reactor (SCFMR)," J. Korean Soc. Waste Manage., 31(8), 843-853(2014). https://doi.org/10.9786/kswm.2014.31.8.843
  11. Eugene, W. R., Rodger, B. B., Andrew, D. E., and Lenore, S. C., Standard Methods For the Examination of Water and $wastewater^{TM}$, 22nd Ed., APHA (with AWWA and Water Environ. Fed.), Hanover, pp. 4-1496(2012).
  12. McCarty, P. L., "Anaerobic Waste Treatment Fundamentals," Public Works, 95(1964).
  13. Eom, T. K. and Lim, J. W., "Effect of ammonium nitrogen in anaerobic biofilter using livestock wastewater," J. Korean Soc. Water and Wastewater, 11(4), 43-53(1997).
  14. Park, W. K., Jun, H. B., Park, N. B., Kwon, S. I., Shin, J. D. and Hong, S. K., "Performance Evaluation and Characteristic Study of the Single Anaerobic Digestion from Piggery Slurry," Korean J. Environ. Agri., 30(1), 31-36(2011). https://doi.org/10.5338/KJEA.2011.30.1.31
  15. Hill, D. T., Cobb, S. A. and Bolte, J. P., "Using Volatile Fatty Acid Relationships to Predict Anaerobic Digester Failure," Trans. ASAE, 30(2), 496-501(1987). https://doi.org/10.13031/2013.31977
  16. Sanchez, E., Borja, R., Travieso, L., Colmenarejo, M. F., Chica, A. and Martin, A., "Treatment of settled piggery waste by a down-flow anaerobic fixed bed reactor," J. Chem. Technol. and Biotechnol., 79, 851-862(2004). https://doi.org/10.1002/jctb.1059
  17. ATV Report, ATV Fachausschuss 2.6 and 2.8, Korrespondenz Abwasser, 34, 77, Germany(1987).
  18. Clifford, W. R., Barnard, J. L. and Stensel, H. D., "Volume 5/ Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal," Water Quality Management Library, Technomic Publishing Co, Inc., Lancaster, pp. 1-431(1992).

Cited by

  1. Evaluation of the Performance Parameters with a Semi-Continuously Fed and Mixed Anaerobic Reactor using Food Waste vol.12, pp.4, 2016, https://doi.org/10.7849/ksnre.2016.12.12.4.088