DOI QR코드

DOI QR Code

자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성

Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors

  • 오영우 (경남대학교 공과대학 나노신소재공학과) ;
  • 안종견 (경남대학교 공과대학 나노신소재공학과)
  • Oh, Young Woo (Department of Nano Materials Science and Engineering, Kyungnam University) ;
  • Ahn, Jong Gyeon (Department of Nano Materials Science and Engineering, Kyungnam University)
  • 투고 : 2015.08.31
  • 심사 : 2015.09.18
  • 발행 : 2015.09.30

초록

Glycine-nitrate와 citric acid를 이용하여 단상의 Ni-Zn ferrite, Ba-ferrite 나노입자와 두 나노복합체 ferrite의 전구체를 제조하고 이를 열처리하여 XRD 및 FT-IR로 각각의 상 분석을, SEM으로 분말의 형상과 크기를, VSM으로 자기적 특성과 합성된 나노복합체 ferrite에서의 exchange-coupling 상호작용을 확인하였다. XRD 분석 결과, 자전 연소법으로 얻은 전구체로 단상의 Ni-Zn ferrite와 Ba-ferrite 나노 입자 및 $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ 나노복합체 페라이트가 합성되었으며, 나노복합체에는 $BaFe_{12}O_{19}$$Ni_{0.5}Zn_{0.5}Fe_2O_4$가 잘 분포되어 있어 경자성과 연자성이 공존하고 있음을 확인하였고, 나노복합체 페라이트의 히스테리시스 곡선의 형상을 통해 경자성과 연자성 사이에 exchange-copuling이 잘 이루어졌음을 확인할 수 있었다. VSM으로 측정한 나노복합체의 경우. GNP로 제조한 precursor를 $900^{\circ}C$에서 하소한 $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ 나노복합체는 포화자화 81.69 emu/g, 잔류자화 38 emu/g, 보자력 2598.48G를 나타내었다. $Ni_{0.5}Zn_{0.5}Fe_2O_4/BaFe_{12}O_{19}$ 복합체에서 $BaFe_{12}O_{19}$의 무게비가 증가 할수록 보자력은 증가하였고, 포화자화값과 잔류자화 값은 감소하였다.

The goal of this research is the create novel magnets with no rare-earth contents, with larger energy product by comparison with currently used ferrites. For this purpose we developed nano-sized hard-type/soft-type composite ferrite in which high remanent magnetization (Mr) and high coercivity (Hc). Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ composite ferrites were prepared by sol-gel combustion method by use of glicine-nitrate and citric acid. Nanocomposite ferrites were calcined at temperature range $700-900^{\circ}C$ for 1h. According to the X-ray diffraction patterns and FT-IR spectra, single phase of NiZn-ferrite and Ba-ferrite were detected and hard/soft nanocomposite ferrite was indicated to the coexistence of the magnetoplumbite-structural $BaFe_{12}O_{19}$ and spinel-structural $Ni_{0.5}Zn_{0.5}Fe_2O_4$ that agreed with the standard JCPDS 10-0325 data. The particle size of nanocomposite turn out to be less than 120 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite ferrite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that of the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite, and $(BH)_{max}$ is increased slightly.

키워드

참고문헌

  1. Y. Kato and T. Takeshi, Jpn. Pat. No.110822 (1932).
  2. J. J. Went and E. W. Gorter, "The magnetic and Electrical properties of Ferroxcube Materials", Philips Technical Review, 13(181), 16 (1952).
  3. E. W. Gorter, "Saturation Magnetization of some Ferromagnetic Oxides with Hexagonal Crystal Structures", Proc. Inst. Electr. Eng., 104B, 255 (1957).
  4. J. Kim, S. G. Cho and K. W. Jeon, "Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles", J. Kor. Magn. Soc., 21(6), 225 (2011). https://doi.org/10.4283/JKMS.2011.21.6.225
  5. E. F. Kneller and R. Hawig, "The Exchange-Spring Magnet: A New Material Principle for Permanent Magnets", IEEE Trans. Magn., 27, 3588 (1991). https://doi.org/10.1109/20.102931
  6. M. Serkol, Y. Koseoglu, A. Batkal, H. Kavas and A. C. Basaran, "Synthesis and magnetic characterization of $Zn_{0.6}Ni_{0.4}Fe_2O_4$ nanoparticles via a polyethylene glycol-assisted hydrothermal route", J. Magn. Magn. Mater., 321, 157 (2009). https://doi.org/10.1016/j.jmmm.2008.08.083
  7. S. Hajarpour, A. H. Raouf and Kh. Gheisari, "Structural evo;ution and magnetic properties of nanocrystalline magnesium- zinc soft ferrites synthesized byglicine-nitrate combustion process", J. Magn. Magn. Mater., 363, 21 (2014). https://doi.org/10.1016/j.jmmm.2014.03.027
  8. A. Thakur, R. R. Singh and P. R. Barman, "Structural and magnetic properties of $La^{3+}$ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method", J. Magn. Magn. Mater., 326, 35 (2013). https://doi.org/10.1016/j.jmmm.2012.08.038
  9. H. Anwar and A. Masqsood, "Enhancement of electrical and magnetic properties of $Cd^{2+}$ doped Mn-Zn soft nanoferrites prepared by the sol-gel autocombustion method", J. Magn. Magn. Mater., 333, 46 (2013). https://doi.org/10.1016/j.jmmm.2012.12.027
  10. Y. W. Oh, "Exchange-coupling Interaction and Magnetic Properties of $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ Nanocomposite Ferrite", J. Kor. Magn. Soc., 24(3), 81 (2014). https://doi.org/10.4283/JKMS.2014.24.3.081