DOI QR코드

DOI QR Code

CNT-Ag 복합패드가 Cu/Au 범프의 플립칩 접속저항에 미치는 영향

Effect of CNT-Ag Composite Pad on the Contact Resistance of Flip-Chip Joints Processed with Cu/Au Bumps

  • 최정열 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Choi, Jung-Yeol (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 투고 : 2015.08.31
  • 심사 : 2015.09.18
  • 발행 : 2015.09.30

초록

이방성 전도접착제를 이용하여 Cu/Au 칩 범프를 Cu 기판 배선에 플립칩 실장한 접속부에 대해 CNT-Ag 복합패드가 접속저항에 미치는 영향을 연구하였다. CNT-Ag 복합패드가 내재된 플립칩 접속부가 CNT-Ag 복합패드가 없는 접속부에 비해 더 낮은 접속저항을 나타내었다. 각기 25 MPa, 50 MPa 및 100 MPa의 본딩압력에서 CNT-Ag 복합패드가 내재된 접속부는 $164m{\Omega}$, $141m{\Omega}$$132m{\Omega}$의 평균 접속저항을 나타내었으며, CNT-Ag 복합패드를 형성하지 않은 접속부는 $200m{\Omega}$, $150m{\Omega}$$140m{\Omega}$의 평균 접속저항을 나타내었다.

We investigated the effect of CNT-Ag composite pad on the contact resistance of flip-chip joints, which were formed by flip-chip bonding of Cu/Au chip bumps to Cu substrate metallization using anisotropic conductive adhesive. Lower contact resistances were obtained for the flip-chip joints which contained the CNT-Ag composite pad than the joints without the CNT-Ag composite pad. While the flip-chip joints with the CNT-Ag composite pad exhibited average contact resistances of $164m{\Omega}$, $141m{\Omega}$, and $132m{\Omega}$ at bonding pressures of 25 MPa, 50 MPa, and 100 MPa, the flip-chip joints without the CNT-Ag composite pad had an average contact resistance of $200m{\Omega}$, $150m{\Omega}$, and $140m{\Omega}$ at each bonding pressure.

키워드

참고문헌

  1. J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013). https://doi.org/10.6117/KMEPS.2013.20.4.017
  2. M. Gonzalez, B. Vandervelde, W. Chistianens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis, and P. H. M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (Euro- SimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).
  3. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  4. J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008), https://doi.org/10.1063/1.2955829
  5. T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann, and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  6. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  7. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  8. M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of metal interconnects for stretchable electronic circuits", Microelectron. Reliab., 48, 825 (2008). https://doi.org/10.1016/j.microrel.2008.03.025
  9. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009). https://doi.org/10.1038/nmat2459
  10. J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  11. D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  12. J. Y. Choi, D. H. Park, and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012). https://doi.org/10.6117/KMEPS.2012.19.3.071
  13. T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann, and H. Reichl, "Stretchable Electronic Systems", Proc. 8th Electronics Packaging Technology Conference (EPTC), 271, IEEE Component, Packaging and Manufacturing Technology Society (CPMT) (2006).
  14. S. P. Lacoura, S. Wagner, Z. Huang, and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
  15. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Mature Lett., 457, 706 (2009). https://doi.org/10.1038/nature07719
  16. T. S. Hansen, K. West, O. Hassager, and N. B. Larsen, "Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-ethylenedioxythiophene) and Polyurethane Elastomers", Adv. Funct. Mater., 17, 3068 (2007).
  17. J. A. Rogers, T. Someya, and Y. Huang, "Materials and Mechanics for Stretchable Electronics", Science, 327, 1603 (2010). https://doi.org/10.1126/science.1182383
  18. J. S. Ha, J. P. Jung, and T. S. Oh, "Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics", J. Microelectron. Packag. Soc., 19(2), 35 (2012). https://doi.org/10.6117/kmeps.2012.19.2.035
  19. D. M. Jung, M. Y. Kim, and T. S. Oh, "Warpage Characteristics of Bottom Packages for Package-on-Package(PoP) with Different Chip Mounting Processes", J. Microelectron. Packag. Soc., 20(3), 63 (2013). https://doi.org/10.6117/kmeps.2013.20.3.063
  20. J. Y. Choi and T. S. Oh, "A Flip Chip Process Using an Interlocking- Joint Structure Locally Surrounded by Non-conductive Adhesive", Korean J. Met. Mater., 50(10), 785 (2012). https://doi.org/10.3365/KJMM.2012.50.10.785
  21. K. J. Shin and T. S. Oh, "Micro-Power Generation Characteristics of Thermoelectric Thin Film Devices Processed by Electrodeposition and Flip-Chip Bonding", J. Electron. Mater., 44(6) 2026 (2015). https://doi.org/10.1007/s11664-015-3647-2
  22. M. J. Yim and K. W. Paik, "Review of Electrically Conductive Adhesive Technologies for Electronic Packaging", Electron. Mater. Lett., 2(3), 183 (2006).
  23. M. A. Uddin and H. P. Chan, "Contact Resistance of Anisotropic Conductive Adhesive Film Based Flip-chip on Glass Packages", Rev. Adv. Mater. Sci., 27(2), 151 (2011).
  24. C. Brun, C. C. Yap, D. Tan, S. Bila, S. Paccini, D. Baillargeat, and B. K. Tay, "Flip Chip Based on Carbon Nanotube-Carbon Nanotube Interconnected Bumps for High-Frequency Applications", IEEE Trans. Nanotechnol., 12, 609 (2013). https://doi.org/10.1109/TNANO.2013.2264534
  25. C. C. Yap, C. Brun, D. Tan, H. Li, E. H. T. Teo, D. Baillargeat, and B. K. Tay, "Carbon Nanotube Bumps for the Flip Chip Packaging System", Nanoscale Res. Lett., 7, 105 (2012). https://doi.org/10.1186/1556-276X-7-105
  26. L. Aryasomayajula and K. J. Wolter, Carbon Nanotube Composites for Electronic Packaging Applications: A Review", J. Nanotechnol., 2013, 296517 (2013).