DOI QR코드

DOI QR Code

티탄산바륨 덴드라이트 나노구조체 기반 플렉서블 압전 나노발전소자

Flexible Piezoelectric Nanocomposite Generator Devices based on BaTiO3 Dendrite Nanostructure

  • 배수빈 (국방과학연구소 제4기술연구본부)
  • Bae, Soo Bin (The 4th Research and Development Institute, Agency for Defense Development)
  • 투고 : 2014.08.20
  • 심사 : 2015.02.27
  • 발행 : 2015.04.05

초록

In this paper, the flexible piezoelectric nanocomposite generator(NCG) device based on $BaTiO_3$ nanostructures was fabricated via simple and low-cost spin coating method. The $BaTiO_3$ nanostructures synthesized by self-assembly reaction showed dendrite morphologies. To produce the piezoelectric nanocomposite(p-NC layer) which acts as an electric energy source in NCG device, the piezoelectric nanopowders($BaTiO_3$) were dispersed in polydimethylsiloxane(PDMS). Sequently, the p-NC layer was inserted in two dielectric layer of PDMS; these layers enabled the NCG device flexibility as well as durability prohibiting detachment(exfoliation) for significantly mechanical bending motions. The fabricated NCG device shows average maximum open circuit voltage of 6.2 V and average maximum current signals of 300 nA at 20 wt% composition of $BaTiO_3$ nanostructures in p-NC layer. Finally, the flexible energy harvester generates stable output signals at any rate of frequency which were used to operate LCD device without any external energy supply.

키워드

참고문헌

  1. G. J. Aubrecht, "Energy: Physical, Environmental, and Social Impac," Pearson Education, London, 3rd edn., pp. 2-15, 2006.
  2. S. Priya and D. J. Inman, "Energy Harvesting Technologies," Springer Science, New York, pp. 3-39, 2009.
  3. R. Yang, Y. Qin, C. Li, G. Zhu and Z. L. Wang, "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator," Nano Lett., Vol. 9, No. 3, pp. 1201-1205, 2009. https://doi.org/10.1021/nl803904b
  4. S. M. Kang, K. J. Park and H. S. Kim, "Circuit Component Requirements for Energy Scavenging System", Trans. KIEE, Vol. 57, No. 10, pp. 1-7, 2008.
  5. 이수진, 김상우, 함영복, "압전에너지 하베스팅 기술동향 및 전망," KISTI 분석 보고서, 2013.
  6. Z. L. Wang and J. H. Song, "Piezoelectric Nanogenerators based on Science," Vol. 312, No. 5771, pp. 242-246. 2006. https://doi.org/10.1126/science.1124005
  7. S. Xu, B. J. Hansen and Z. L. Wang, "Piezoelectric-Nanowire-Enabled Power Source for Driving Wireless Microelectronics," Nat. Commun., Vol. 1, no. 93, DOI:10.1038/mcomms 1098, 2010.
  8. A. Koka, and H. A. Sodano "High-Sensitivity Accelerometer Composed of Ultra-Long Vertically Aligned Barium Titanate Nanowire Arrays," Nat. Commun., Vol. 4, No. 2682, DOI 10.1038/ncomms 3682, 2013
  9. K. I. Park, S. B. Bae, S. H. Yang, H. I. Lee, K. Lee and S. J. Lee, "Lead-free BaTiO3 Nanowiresbased Flexible Nanocomposite Generator," Nanoscale, Vol. 6, pp. 8962-8968, 2014. https://doi.org/10.1039/C4NR02246G
  10. J. B. Park, B. J. Kelly, G. H. Kenner, A. F. Vonrecum, M. F. Grether, W. W. Coffeen, Piezoelectric Ceramic Implants - In vivo Results. J. Biomed. Mater. Res., Vol. 15, pp. 103-110, 1981. https://doi.org/10.1002/jbm.820150114
  11. K. I. Park, M. B. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. J. Lee "Flexible Nanocomposite Generator Made of $BaTiO_3$ Nanoparticles and Graphitic Carbons," Adv. Mater., Vol. 24, pp. 2999-3004, 2012. https://doi.org/10.1002/adma.201200105
  12. W. Hertl, "Kinetics of Barium Titanate Synthesis," J. Am. Ceram. Soc., Vol. 71, No. 10, pp. 879-883, 1988. https://doi.org/10.1111/j.1151-2916.1988.tb07540.x
  13. N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta, "Shape-Controlled Monocrystalline Ferroelectric Barium Titanate Nanostructures: From Nanotubes and Nanowires to Ordered Nanostructures," J. Phys. Chem. C, Vol. 112, No. 23, pp. 8634-8642, 2008. https://doi.org/10.1021/jp802055a
  14. Q. Feng, M. Hirasawa, and K. Yanagisawa "Synthesis of Crystal-Axis-Oriented $BaTiO_3$ and Anatase Platelike Particles by a Hydrothermal Soft Chemical Process," Chem. Mater., Vol. 13, pp. 290-296, 2001. https://doi.org/10.1021/cm000411e
  15. C. K. Jeong, I. S. Kim, K. I. Park, M. H. Oh, H. M. Paik, G. T. Hwang, K. S. No, Y. S. Nam and K. J. Lee, ACS Nano, Vol. 7, No. 12, pp. 11016-11025, 2013. https://doi.org/10.1021/nn404659d