DOI QR코드

DOI QR Code

Analysis of Heat Transfer Characteristics Based on Design Factors for Determining the Internal Geometry of Metal Insulation in Nuclear Power Plant

원전용 금속단열재의 내부 형상결정을 위한 설계인자 별 열전달 특성 분석

  • Received : 2015.03.23
  • Accepted : 2015.09.04
  • Published : 2015.11.01

Abstract

A heat insulating material used in the industrial site normally derives its heat insulating performance by using a low thermal conductivity material such as glass fiber. In case of the metal insulation for nuclear power plant, in contrast, only TP 304 stainless steel foil having high thermal conductivity is the only acceptable material. So, it is required to approach in structural aspect to ensure the insulation performance. In this study, the design factors related to the metal insulation internal structure were determined considering the three modes of heat transfer, i.e., conduction, convection, and radiation. The analysis of heat flow was used to understand the ratio of the heat transfer from each factor to the overall heat transfer from all the factors. Based on this study, in order to minimize the convection phenomenon caused by the internal insulation, a multiple foil was inserted in the insulation. The increase in the conduction heat transfer rate was compared, and the insulation performance under the three modes of heat transfer was analyzed in order to determine the internal geometry.

일반적으로 산업현장에서 많이 사용되고 있는 단열재는 유리섬유와 같은 열전도도가 낮은 재료를 사용함으로써 단열성능을 확보하고 있다. 이와 달리 원전용 금속단열재의 경우 높은 열전도도를 가진 TP 304 스테인리스 박판을 재료로 한정하고 있어 단열성능을 확보하기 위해서는 구조적 측면에서의 접근이 필요하다. 본 연구에서는 금속단열재 내부구조에 대한 설계인자를 전도, 대류, 복사로 구성된 3가지 열전달 모드를 고려해 추출하고 각 인자들이 열전달에 미치는 영향과 각각의 열전달이 전체 열전달에 차지하는 비율을 열 유동해석을 이용하여 파악하고자 하였다. 본 연구를 통해 단열재 내부에서 발생되는 대류현상을 최소화하기 위해 다수의 박판을 삽입함과 동시에 증가하는 전도 비율을 비교하여 내부형상결정을 위한 세 가지 열전달 모드 하에서의 단열성능을 분석하였다.

Keywords

References

  1. USNRC, 2003, "Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Collant Accident," Regulatory Guide 1.82, Rev. 3.
  2. USNRC, 2005, "GSI-191: Experimental Studies of Loss of Coolant Accident Generated Debris Accumulation and Head Loss with Emphasis on the Effects of Calcium Silicate Insulation," NUREG/CR-6874.
  3. Kang, H. and Baek, Y. K., 2009, "An Analysis of Thermal Conductivity of Ceramic Fibrous Insulator by Modeling & Simulation Method I," Journal of the Korea Institute of Military Science and Technology, Vol. 5, No. 1, pp. 83-95.
  4. ANSYS, Inc., 2011, "ANSYS FLUENT User's Guide," Ver. 14.0.
  5. McAdams, W. H., 1954, Heat Transmission, 3rd ed., McGraw-Hill, New York, NY, pp. 165-171.
  6. Incropera, F. P. and DeWitt, D. P., 1985, Fundamentals of Heat and Mass Transfer, John Wiley and Sons, New York, NY, pp. 795-797.
  7. Mahesh, M. R. and Raul, R. K., 2011, Engineering Heat Transfer, Jones & Bartlett Learning, Burlington, pp. 883-884.
  8. Greg, F. N., 2002, Heat Transfer in Single and Multiphase Systems, CRC PRESS, London, pp. 186-190.