DOI QR코드

DOI QR Code

잔골재 표준입도를 고려하여 조파쇄 바텀애시를 혼입한 일반강도 모르타르의 성능

Properties of Normal-Strength Mortar Containing Coarsely-Crushed Bottom Ash Considering Standard Particle Size Distribution of Fine Aggregate

  • 투고 : 2015.01.30
  • 심사 : 2015.06.18
  • 발행 : 2015.10.30

초록

잔골재 표준입도를 고려하여 조파쇄 바텀애시를 혼입한 일반강도 모르타르의 성능을 실험적으로 분석하였다. 비교군으로서, 파쇄하지 않은 일반 바텀애시를 천연잔골재와 단순 치환하여 사용하였다. 바텀애시를 결합재와 일반 잔골재 사이의 입도를 갖도록 굵게 파쇄할 경우, 입자의 흡수율 및 표건상태 비중이 일반 잔골재 수준으로 조절되었다. 잔골재 표준입도를 고려해 조파쇄 바텀애시를 혼입하는 방법은, 바텀애시 원재료를 일반 잔골재와 단순 치환하던 기존의 배합방법에서 발생하던 모르타르의 유동성 감소 및 강도 감소를 동시에 막을 수 있는 해법이 될 수 있음을 확인하였다. 조파쇄 바텀애시를 30% 이내로 모르타르에 혼입할 경우, 모르타르의 동탄성계수 및 건조수축은 일반골재 모르타르에 비해 크게 변화하지 않았다.

Properties of normal-strength mortar containing coarsely-crushed coal bottom ash considering standard particle size distribution of fine aggregate were investigated. Mortar containing raw bottom ash was applied as a reference. By crushing the bottom ash with a particle size larger than fine binder but smaller than fine aggregates, i.e., coarse-crushing, water absorption and specific gravity of the particles could be controlled as similar levels to those of natural fine aggregates. Workability and strength of the mortar were not changed and even increased when the coarsely-crushed bottom ash was added considering standard particle size distribution in Standard Specification for Concrete, while those were decreased when raw bottom ash was added without any treatment. When a replacement ratio of coarsely-crushed bottom ash was less than 30 vol.%, there were no significant decrease in dynamic modulus of elasticity and dry shrinkage of the mortar.

키워드

참고문헌

  1. Park, S. B., Jang, Y. I., Lee, J., and Lee, B. J., "An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea", Journal of Hazardous Materials, Vol.166, No.1, 2009, pp.348-355. https://doi.org/10.1016/j.jhazmat.2008.11.054
  2. Kim, H. K. and Lee, H. K. "Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations", KSCE Journal of Civil Engineering, 2015, pp.1-17.
  3. Kim, H. K. and Lee, H. K., "Effects of high volumes of fly ash, blast furnace slag, and bottom ash on flow characteristics, density, and compressive strength of high-strength mortar", Journal of Materials in Civil Engineering, Vol.25, No.5, 2012, pp.662-665.
  4. Andrade, L. B., Rocha, J. C., and Cheriaf, M., "Influence of coal bottom ash as fine aggregate on fresh properties of concrete", Construction and Building Materials, Vol.23, No.2, 2009, pp.609-614. https://doi.org/10.1016/j.conbuildmat.2008.05.003
  5. Yuksel, I., Bilir, T., and Ozkan, O., "Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate", Building and Environment, Vol.42, No.7, 2007, pp.2651-2659. https://doi.org/10.1016/j.buildenv.2006.07.003
  6. Kula, I., Olgun, A., Sevinc, V., and Erdogan, Y., "An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials", Cement and Concrete Research, Vol.32, No.2, 2002, pp.227-232. https://doi.org/10.1016/S0008-8846(01)00661-5
  7. Kang, S. T., Ryu, G. S., Koh, K. T., and Lee, J. H., "Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder", J. Korea Concr. Inst., Vol.23, No.4, 2011, pp.487-494. https://doi.org/10.4334/JKCI.2011.23.4.487
  8. Kim, H. K. and Lee, H. K., "Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete", Construction and Building Materials, Vol.25, No.2, 2011, pp.1115-1122. https://doi.org/10.1016/j.conbuildmat.2010.06.065
  9. Kim, H. K., Jeon, J. H., and Lee, H. K., "Flow, water absorption, and mechanical characteristics of normal-and high-strength mortar incorporating fine bottom ash aggregates", Construction and Building Materials, Vol.26, No.1, 2012, pp.249-256. https://doi.org/10.1016/j.conbuildmat.2011.06.019
  10. Kim, H. K., Jang, J. G., Choi, Y. C., and Lee, H. K. "Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing", Construction and Building Materials, Vol.71, 2014, pp.334-343. https://doi.org/10.1016/j.conbuildmat.2014.08.069
  11. Cheriaf, M., Rocha, J. C., and Pera, J., "Pozzolanic properties of pulverized coal combustion bottom ash", Cement and Concrete Research, Vol.29, No.9, 1999, pp.1387-1391. https://doi.org/10.1016/S0008-8846(99)00098-8
  12. Kim, H. K., "Utilization of sieved and ground coal bottom ash powders as a coarse binder in high-strength mortar to improve workability", Construction and Building Materials, Vol.91, 2015, pp.57-64. https://doi.org/10.1016/j.conbuildmat.2015.05.017
  13. Gesoglu, M., Ozturan, T., and Guneyisi, E., "Shrinkage cracking of lightweight concrete made with cold-bonded fly ash aggregates", Cement and Concrete Research, Vol.34, No.7, 2004, pp.1121-1130. https://doi.org/10.1016/j.cemconres.2003.11.024