DOI QR코드

DOI QR Code

Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans

  • Lee, Eun Byeol (College of Pharmacy, Woosuk University) ;
  • Kim, Jun Hyeong (College of Pharmacy, Woosuk University) ;
  • Cha, Youn-Soo (Department of Food Science and Human Nutrition, Chonbuk National University) ;
  • Kim, Mina (Department of Food Science and Human Nutrition, Chonbuk National University) ;
  • Song, Seuk Bo (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Cha, Dong Seok (College of Pharmacy, Woosuk University) ;
  • Jeon, Hoon (College of Pharmacy, Woosuk University) ;
  • Eun, Jae Soon (College of Pharmacy, Woosuk University) ;
  • Han, Sooncheon (College of Pharmacy, Woosuk University) ;
  • Kim, Dae Keun (College of Pharmacy, Woosuk University)
  • Received : 2015.08.13
  • Accepted : 2015.09.30
  • Published : 2015.11.01

Abstract

Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.

Keywords

References

  1. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Ariga, T. and Asao, Y. (1981) Isolation, identification and organoleptic astringency of dimeric proanthocyanidins occurring in Azuki beans. Agric. Biol. Chem. 45, 2709-2712. https://doi.org/10.1271/bbb1961.45.2709
  3. Borghi, S. M., Carvalho, T. T., Staurengo-Ferrari, L., Hohmann, M. S., Pinge-Filho, P., Casagrande, R. and Verri, W. A. Jr (2013) Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod. 76, 1141-1149. https://doi.org/10.1021/np400222v
  4. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
  5. Can, O. D., Ozkay, U. D. and Ucel, U. I. (2013) Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. Eur. J. Pharmacol. 699, 250-257. https://doi.org/10.1016/j.ejphar.2012.10.017
  6. Chen, W., Sudji, I. R., Wang, E., Joubert, E., van Wyk, B. E. and Wink, M. (2013) Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine 20, 380-386. https://doi.org/10.1016/j.phymed.2012.10.006
  7. Choi, J. S., Islam, Md. N., Ali, Md. Y., Kim, Eon. J. Y., Kim, M. and Jung, H. A. (2014) Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food Chem. Toxicol. 64, 27-33. https://doi.org/10.1016/j.fct.2013.11.020
  8. Chondrogianni, N., Voutetakis, K., Kapetanou, M., Delitsikou, V., Papaevgeniou, N., Sakellari, M., Lefaki, M., Filippopoulou, K. and Gonos, E. S. (2015) Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res. Rev. 23, 37-55. https://doi.org/10.1016/j.arr.2014.12.003
  9. Choo, C. Y., Sulong, N. Y., Man, F. and Wong, T. W. (2012) Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo ${\alpha}$-glucosidase inhibition. J. Ethnopharmacol. 142, 776-781. https://doi.org/10.1016/j.jep.2012.05.062
  10. Feng, S., Cheng, H., Xu, Z., Shen, S., Yuan, M., Liu, J. and Ding, C. (2015) Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans. Int. J. Biol. Macromol. 81, 188-194. https://doi.org/10.1016/j.ijbiomac.2015.07.057
  11. Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-47. https://doi.org/10.1038/35041687
  12. Gruber, J., Fong, S., Chen, C.-B., Yoong, S., Pastorin, G., Schaffer, S., Cheah, I. and Halliwell, Barry (2013) Mitochondria-targeted antioxidants and metabolic modulators as harmacological interventions to slow ageing. Biotech. Adv. 31, 563-592. https://doi.org/10.1016/j.biotechadv.2012.09.005
  13. Grunz, G., Haas, K., Soukup, S., Klingenspor, M., Kulling, S. E., Daniel, H. and Spanier, B. (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev. 133, 1-10. https://doi.org/10.1016/j.mad.2011.11.005
  14. Guarente, L. and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms. Nature 408, 255-62. https://doi.org/10.1038/35041700
  15. Han, K. H., Fukushima, M., Ohba, K., Shimada, K., Sekikawa, M., Chiji, H., Lee, C. H. and Nakano, M. (2004) Hepatoprotective effects of the water extract from adzuki bean hulls on acetaminopheninduced damage in rat liver. J. Nutr. Sci. Vitaminol. 50, 380-383. https://doi.org/10.3177/jnsv.50.380
  16. Itoh, T., Kobayashi, M., Horio, F. and Furuichi, Y. (2009) Hypoglycemic effect of hot-water extract of adzuki (Vigna angularis) in spontaneously diabetic KK-A(y) mice. Nutrition 25, 134-141. https://doi.org/10.1016/j.nut.2008.08.001
  17. Jiang, Y., Zeng, K. W., David, B. and Massiot, G. (2014) Constituents of Vigna angularis and their in vitro anti-inflammatory activity. Phytochemistry 107, 111-118. https://doi.org/10.1016/j.phytochem.2014.08.011
  18. Kenyon, C. J. (2010) The genetics of ageing. Nature 464, 504-512. https://doi.org/10.1038/nature08980
  19. Khole, S., Chatterjee, S., Variyar, P., Sharma, A., Devasagayam, T.P.A. and Ghaskadbi, S. (2014) Bioactive constituents of germinated fenugreek seeds with strong antioxidant potential. J. Funct. Foods 6, 270-279. https://doi.org/10.1016/j.jff.2013.10.016
  20. Kim, J. H., Lee, B. C., Kim, J. H., Sim, G. S., Lee, D. H., Lee, K. E., Yun, Y. P. and Pyo, H. B. (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch. Pharm. Res. 28, 195-202. https://doi.org/10.1007/BF02977715
  21. Kimoto-Kinoshita, S., Nishida, S. and Tomura, T. T. (1999) Age-related change of antioxidant capacities in the cerebral cortex and hippocampus of stroke-prone spontaneously hypertensive rats. Neurosci. Lett. 273, 41-44. https://doi.org/10.1016/S0304-3940(99)00623-0
  22. Kitagawa, I., Wang, H. K., Saito, M. and Yoshikawa, M. (1983) Saponin and sapogenol. XXXI. Chemical constituents of the seeds of Vigna angularis (Willd.) Ohwi et Ohashi, (1) Triterpenoidal sapogenols and 3-furanmethanol ${\beta}$-D-glucopyranoside. Chem. Pharm. Bull. 31, 664-673. https://doi.org/10.1248/cpb.31.664
  23. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328, 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  24. Li, Y. L., Ma, S. C., Yang, Y. T., Ye, S. M. and But, P. P. H. (2002) Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol. 79, 365-368. https://doi.org/10.1016/S0378-8741(01)00410-X
  25. Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. U.S.A. 92, 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
  26. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55, 4169-4177. https://doi.org/10.1021/jm2014315
  27. Morck, C. and Pilon, M. (2006) C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6, 39. https://doi.org/10.1186/1471-213X-6-39
  28. Mukai, Y. and Sato, S. (2009) Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension. Nutr. Metab. Cardiovasc. Dis. 19, 491-497. https://doi.org/10.1016/j.numecd.2008.09.007
  29. Ozkay, U. D. and Can, O. D. (2013) Anti-nociceptive effect of vitexin mediated by the opioid system in mice. Pharmacol. Biochem. Behav. 109, 23-30. https://doi.org/10.1016/j.pbb.2013.04.014
  30. Palme, E., Bilia, A. R., De Feo, V. and Morelli, I. (1994) Flavonoid glycosides from Cotoneaster thymaefolia. Phytochemistry 35, 1381-1382. https://doi.org/10.1016/S0031-9422(06)80133-0
  31. Quercia, V., Turchetto, L., Pierini, N., Cuozzo, V. and Percaccio, G. (1978) Identification and determination of vitexin and isovitexin in Passiflora incarnata extracts. J. Chromatogr. A 161, 396-402. https://doi.org/10.1016/S0021-9673(01)85261-4
  32. Si, H. and Liu, D. J. (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 25, 581-591. https://doi.org/10.1016/j.jnutbio.2014.02.001
  33. Sinha, M., Saha, A., Basu, S., Pal, K. and Chakrabarti, S. (2010) Aging and antioxidants modulate rat brain levels of homocysteine and dehydroepiandrosterone sulphate (DHEA-S): Implications in the pathogenesis of Alzheimer's disease. Neurosci. Lett. 483, 123-126. https://doi.org/10.1016/j.neulet.2010.07.075
  34. Strayer, A., Wu, Z., Christen, Y., Link, C. D. and Luo, Y. (2003) Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J. 17, 2305-2307. https://doi.org/10.1096/fj.03-0376fje
  35. Su, S. and Wink, M. (2015) Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 117, 340-350. https://doi.org/10.1016/j.phytochem.2015.06.021
  36. Surco-Laos, F., Duenas, M., Gonzalez-Manzano, S., Cabello, J., Santos-Buelga, C. and Gonzalez-Paramas, A. M. (2012) Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Res. Int. 46, 514-521. https://doi.org/10.1016/j.foodres.2011.10.014
  37. Swindell, W. R. (2009) Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging (Albany NY) 1, 573-577.
  38. Yao, Y., Cheng, X., Wang, L., Wang, S. and Ren, G. (2011) A determination of potential alpha-glucosidase inhibitors from Azuki Beans (Vigna angularis). Int. J. Mol. Sci. 12, 6445-6451. https://doi.org/10.3390/ijms12106445
  39. Yumiko, H., Tomomi, M., Motonori, F., Kazuo, T. and Yoshiteru, I. (2009) Constituents and anti-oxidative activity of a hot-water extract of Adzuki (Vigna angularis) beans. J. Jpn. Soc. Nutr. Food Sci. 62, 3-11. https://doi.org/10.4327/jsnfs.62.3

Cited by

  1. A review on the pharmacological effects of vitexin and isovitexin vol.115, 2016, https://doi.org/10.1016/j.fitote.2016.09.011
  2. Vitexin alleviates ox-LDL-mediated endothelial injury by inducing autophagy via AMPK signaling activation vol.85, 2017, https://doi.org/10.1016/j.molimm.2017.02.020
  3. Effects of C-Glycosides from Apios americana Leaves against Oxidative Stress during Hyperglycemia through Regulating Mitogen-Activated Protein Kinases and Nuclear Factor Erythroid 2-Related Factor 2 vol.65, pp.34, 2017, https://doi.org/10.1021/acs.jafc.7b03163
  4. Current Perspective in the Discovery of Anti-aging Agents from Natural Products 2017, https://doi.org/10.1007/s13659-017-0135-9
  5. The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans vol.8, pp.None, 2015, https://doi.org/10.3389/fphar.2017.00884
  6. Lifespan Extending and Oxidative Stress Resistance Properties of a Leaf Extracts from Anacardium occidentale L. in Caenorhabditis elegans vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/9012396
  7. Natural Products as Modulators of Sirtuins vol.25, pp.14, 2015, https://doi.org/10.3390/molecules25143287
  8. Anti-aging effects of a functional food via the action of gut microbiota and metabolites in aging mice vol.13, pp.13, 2015, https://doi.org/10.18632/aging.202873
  9. Flavonoids from the mung bean coat promote longevity and fitness in Caenorhabditis elegans vol.12, pp.17, 2015, https://doi.org/10.1039/d1fo01322j
  10. Antioxidant activities of spray-dried carotenoids using maltodextrin-Arabic gum as wall materials vol.45, pp.1, 2015, https://doi.org/10.1186/s42269-021-00515-z
  11. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans vol.26, pp.23, 2021, https://doi.org/10.3390/molecules26237323