References
- Auwarter, V., Dresen, S., Weinmann, W., Muller, M., Putz, M. and Ferreiros, N. (2009) 'Spice'and other herbal blends: harmless incense or cannabinoid designer drugs? J. Mass. Spectrom. 44, 832-837. https://doi.org/10.1002/jms.1558
- Botanas, C. J., de la Pena, J. B., dela Pena, I. J., Tampus, R., Yoon, R., Kim, H. J., Lee, Y. S., Jang, C. G. and Cheong, J. H. (2015) Methoxetamine, a ketamine derivative, produced conditioned place preference and was self-administered by rats: Evidence of its abuse potential. Pharmacol. Biochem. Behav. 133, 31-36. https://doi.org/10.1016/j.pbb.2015.03.007
-
Braida, D., Iosue, S., Pegorini, S. and Sala, M. (2004)
${\Delta}$ 9-Tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur. J. Pharmacol. 506, 63-69. https://doi.org/10.1016/j.ejphar.2004.10.043 - Brents, L. K., Reichard, E. E., Zimmerman, S. M., Moran, J. H., Fantegrossi, W. E. and Prather, P. L. (2011) Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS One 6. e21917 https://doi.org/10.1371/journal.pone.0021917
- Chaperon, F., Soubrie, P., Puech, A. J. and Thiebot, M. H. (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology 135, 324-332. https://doi.org/10.1007/s002130050518
- Cheer, J., Kendall, D. and Marsden, C. (2000) Cannabinoid receptors and reward in the rat: a conditioned place preference study. Psychopharmacology 151, 25-30. https://doi.org/10.1007/s002130000481
- Crawley, J. N., Corwin, R. L., Robinson, J. K., Felder, C. C., Devane, W. A. and Axelrod, J. (1993) Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacol. Biochem. Behav. 46, 967-972. https://doi.org/10.1016/0091-3057(93)90230-Q
- de la Pena, J. B. I., Lee, H. C., Ike, C., Woo, T. S., Yoon, S. Y., Lee, H. L., Han, J. S., Lee, J. I., Cho, Y. J. and Shin, C. Y. (2012) Rewarding and reinforcing effects of the NMDA receptor antagonistbenzodiazepine combination, zoletil(R): Difference between acute and repeated exposure. Behav. Brain Res. 233, 434-442. https://doi.org/10.1016/j.bbr.2012.05.038
- Del Arco, I., Marti, J. L., Gorriti, M. A. and Navarro, M. (1998) Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol. Dis. 5, 483-501. https://doi.org/10.1006/nbdi.1998.0217
- Drews, E., Schneider, M. and Koch, M. (2005) Effects of the cannabinoid receptor agonist WIN 55, 212-2 on operant behavior and locomotor activity in rats. Pharmacol. Biochem. Behav. 80, 145-150. https://doi.org/10.1016/j.pbb.2004.10.023
- Fadda, P., Scherma, M., Spano, M. S., Salis, P., Melis, V., Fattore, L. and Fratta, W. (2006) Cannabinoid self-administration increases dopamine release in the nucleus accumbens. Neuroreport 17, 1629-1632. https://doi.org/10.1097/01.wnr.0000236853.40221.8e
- Fantegrossi, W. E., Moran, J. H., Radominska-Pandya, A. and Prather, P. L. (2014) Distinct pharmacology and metabolism of K2 synthetic greater toxicity? Life Sci. 97, 45-54. https://doi.org/10.1016/j.lfs.2013.09.017
- Fattore, L. and Fratta, W. (2011) Beyond THC: the new generation of cannabinoid designer drugs. Front. Behav. Neurosci. 5. 60
-
Ghozland, S., Matthes, H. W., Simonin, F., Filliol, D., Kieffer, B. L. and Maldonado, R. (2002) Motivational effects of cannabinoids are mediated by
$\mu$ -opioid and${\kappa}$ -opioid receptors. J. Neurosci. 22, 1146-1154. - Golovko, A. (2011) Cannabinoids: Neurochemistry and neurobiology. Biol. Bull. Rev. 1, 526-535. https://doi.org/10.1134/S2079086411060028
- Gurney, S. M., Scott, K., Kacinko, S., Presley, B. and Logan, B. (2014) Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic. Sci. Rev. 26, 54-78.
- Huestis, M. A. (2002) Cannabis(Marijuana)- effects on human behavior and performance. Forensic Sci. Rev. 14, 15-60.
- Huffman, J. W. and Padgett, L. W. (2005) Recent developments in the medicinal chemistry of cannabimimetic indoles, pyrroles and indenes. Curr. Med. Chem. 12, 1395-1411. https://doi.org/10.2174/0929867054020864
-
Justinova, Z., Tanda, G., Redhi, G. H. and Goldberg, S. R. (2003) Selfadministration of
${\Delta}$ 9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology 169, 135-140. https://doi.org/10.1007/s00213-003-1484-0 - Maldonado, R. (2002) Study of cannabinoid dependence in animals. Pharmacol. Ther. 95, 153-164. https://doi.org/10.1016/S0163-7258(02)00254-1
- Maldonado, R. and de Fonseca, F. R. (2002) Cannabinoid addiction: behavioral models and neural correlates. J. Neurosci. 22, 3326-3331.
- Martellotta, M., Cossu, G., Fattore, L., Gessa, G. and Fratta, W. (1998) Self-administration of the cannabinoid receptor agonist WIN 55, 212-2 in drug-naive mice. Neuroscience 85, 327-330. https://doi.org/10.1016/S0306-4522(98)00052-9
- McGregor, I. S., Issakidis, C. N. and Prior, G. (1996) Aversive effects of the synthetic cannabinoid CP 55,940 in rats. Pharmacol. Biochem. Behav. 53, 657-664. https://doi.org/10.1016/0091-3057(95)02066-7
- Presley, B., Jansen-Varnum, S. and Logan, B. (2013) Analysis of synthetic cannabinoids in botanical material: a review of analytical methods and findings. Forensic Sci. Rev. 25, 27-46.
- Rey, A. A., Purrio, M., Viveros, M. P. and Lutz, B. (2012) Biphasic effects of cannabinoids in anxiety responses: CB1 and GABAB receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 37, 2624-2634. https://doi.org/10.1038/npp.2012.123
- Sanudo-Pena, M. C., Romero, J., Seale, G. E., Fernandez-Ruiz, J. J. and Walker, J. M. (2000) Activational role of cannabinoids on movement. Eur. J. Pharmacol. 391, 269-274. https://doi.org/10.1016/S0014-2999(00)00044-3
- Schramm-Sapyta, N. L., Cha, Y. M., Chaudhry, S., Wilson, W. A., Swartzwelder, H. S. and Kuhn, C. M. (2007) Differential anxiogenic, aversive, and locomotor effects of THC in adolescent and adult rats. Psychopharmacology 191, 867-877. https://doi.org/10.1007/s00213-006-0676-9
- Solinas, M., Yasar, S. and Goldberg, S. R. (2007) Endocannabinoid system involvement in brain reward processes related to drug abuse. Pharmacol. Res. 56, 393-405. https://doi.org/10.1016/j.phrs.2007.09.005
- Tai, S. and Fantegrossi, W. E. (2014) Synthetic cannabinoids: pharmacology, behavioral effects, and abuse potential. Curr. Addict. Rep. 1, 129-136. https://doi.org/10.1007/s40429-014-0014-y
- Tanda, G., Munzar, P. and Goldberg, S. R. (2000) Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat. Neurosci. 3, 1073-1074. https://doi.org/10.1038/80577
- Tzschentke, T. M. (2007) Review on CPP: Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict. Biol. 12, 227-462. https://doi.org/10.1111/j.1369-1600.2007.00070.x
- Uchiyama, N., Kikura-Hanajiri, R., Matsumoto, N., Huang, Z.-L., Goda, Y. and Urade, Y. (2012) Effects of synthetic cannabinoids on electroencephalogram power spectra in rats. Forensic Sci. Int. 215, 179-183. https://doi.org/10.1016/j.forsciint.2011.05.005
- Valjent, E., Bertran-Gonzalez, J., Aubier, B., Greengard, P., Herve, D. and Girault, J.-A. (2010) Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 35, 401-415 https://doi.org/10.1038/npp.2009.143
-
Valjent, E. and Maldonado, R. (2000) A behavioural model to reveal place preference to
${\Delta}$ 9-tetrahydrocannabinol in mice. Psychopharmacology 147, 436-438. https://doi.org/10.1007/s002130050013
Cited by
- Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health vol.8, 2017, https://doi.org/10.3389/fpsyt.2017.00156
- Synthetic cannabinoid, JWH-030, induces QT prolongation through hERG channel inhibition vol.5, pp.6, 2016, https://doi.org/10.1039/C6TX00259E
- Impairment of opiate-mediated behaviors by the selective TRPV1 antagonist SB366791 2017, https://doi.org/10.1111/adb.12460
- The Abuse Potential of α-Piperidinopropiophenone (PIPP) and α-Piperidinopentiothiophenone (PIVT), Two New Synthetic Cathinones with Piperidine Ring Substituent vol.25, pp.2, 2017, https://doi.org/10.4062/biomolther.2016.241
- A novel synthetic cathinone, 2-(methylamino)-1-(naphthalen-2-yl) propan-1-one (BMAPN), produced rewarding effects and altered striatal dopamine-related gene expression in mice vol.317, 2017, https://doi.org/10.1016/j.bbr.2016.10.016
- Synthetic Pot: Not Your Grandfather’s Marijuana vol.38, pp.3, 2017, https://doi.org/10.1016/j.tips.2016.12.003
- Old and new synthetic cannabinoids: lessons from animal models vol.50, pp.1, 2018, https://doi.org/10.1080/03602532.2018.1430824
- Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats vol.13, pp.None, 2015, https://doi.org/10.3389/fnins.2019.01163
- Medicinal Use of Synthetic Cannabinoids-a Mini Review vol.5, pp.1, 2015, https://doi.org/10.1007/s40495-018-0165-y
- Δ9-tetrahydrocannabinol: Drug discrimination abuse liability testing in female Lister Hooded rats: Trials, tribulations and triumphs vol.106, pp.None, 2015, https://doi.org/10.1016/j.vascn.2020.106937