References
- Aravas, N. (1987) On The Numerical Integration of a Class Of Pressure-Dependent Plasticity Models, Int. J. Num. Methods Eng., 24, pp.1395-1416. https://doi.org/10.1002/nme.1620240713
- Degenstein, N.J. (2007) Spatially Resolved Species and Temperature Profiles in the Catalytic Partial Oxidation of Methane and Ethane, Ph.D. thesis, University of Minnesota, 421 Washington Ave. S.E.
- Fabrice, S.-M., Laurent, C., Cavaille, J.-Y. Emanuelle, C. (2006) Mechanical Properties of High Density Polyurethane Foams: I. Effect of the Density, Composit. Sci. & Tech., 66(15), pp.2700-2708. https://doi.org/10.1016/j.compscitech.2006.03.009
- Ihab, G., Valery, P., Raouf, I., Emmanuel, A. (2012) Temperature Effect on Non-Stationary Compressive Loading Response of Polymethacrylimide Solid Foam, Compos. Struct., 94, pp.3052-3063. https://doi.org/10.1016/j.compstruct.2012.04.022
- Lee, C.S., Kim, J.H., Kim, S.K., Ryu, D.M., Lee, J.M. (2015) Initial and Progressive Failure Analyses for Composite Laminates using Puck Failure Criterion and Damage-coupled Finite Element Method, Compos. Struct., 121, pp.406-419. https://doi.org/10.1016/j.compstruct.2014.11.011
- Lee, C.S., Kim, M.S., Park, S.B., Kim, J.H., Bang, C.S., Lee, J.M. (2015) A Temperature- and Strain-Rate-Dependent Isotropic Elasto-Viscoplastic Model for Glass-Fiber-Reinforced Polyurethane Foam, Mater. & Design, 84, pp.163-172. https://doi.org/10.1016/j.matdes.2015.06.086
- Lee, S.J., Yoon, Y.C., Cho, W.Y., Yu, S.M., Zi, G.S. (2009) Large Deformation Inelastic Analysis of API-X80 Steel Linepipes, J. Comput. Struct. Eng. Inst. Korea, 22(4), pp.363-370.
- Luo, H., Zhang, Y., Wang, B., Lu, H. (2010) Characterization of the Compressive behavior of Glass Fiber Reinforced Polyurethane Foam at Different Strain Rates, J. Offshore Mech. & Arctic Eng., 132(2), 021301. https://doi.org/10.1115/1.4000396
- Mclntyre, A., Anderton, G.E. (1979) Fracture Properties of a Rigid Polyurethane Foam over a Range of Densities, Polymer, 20(2), pp.247-253. https://doi.org/10.1016/0032-3861(79)90229-5
- Mohamed, A., Guenael, G., Philippe, D.S., Delphine, S. (2013) Numerical Integration of an Advanced Gurson Model for Shear Loading: Application to the Blanking Process, Comput. Mater. Sci., 72, pp.62-67. https://doi.org/10.1016/j.commatsci.2013.01.035
- Siegmann, A., Kenig, S., Alperstein, D., Narkis, M. (1983) Mechanical Behavior of Reinforced Polyurethane Foams, Polymer Composites, 3(2), pp.113-119.
- Thirumal, M., Dipak, K., Nikhil, K., Singha, B.S., Manjunath, Y.P.N. (2008) Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam, J. Appl. Polymer Sci., 108, pp.1810-1817. https://doi.org/10.1002/app.27712
- Tvergaard, V., Needleman, A. (1984) Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metallurgica, 32(1), pp.157-169. https://doi.org/10.1016/0001-6160(84)90213-X
- Yang, S.Y. (2010) Conversion of ABAQUS user Material Subroutines, J. Comput. Struct. Eng. Inst. Korea, 23(6), pp.635-640.
Cited by
- Effect of graphene oxide on mechanical characteristics of polyurethane foam vol.40, pp.6, 2016, https://doi.org/10.5916/jkosme.2016.40.6.493
- Comparative Study on Mechanical Behavior after Deformation Recovery of Polymeric Foam for Ships and Offshore Structures vol.53, pp.3, 2016, https://doi.org/10.3744/SNAK.2016.53.3.195
- Mechanical Behavior of Polymer Foam Reinforced with Silica Aerogel vol.31, pp.6, 2017, https://doi.org/10.26748/KSOE.2017.12.31.6.413