DOI QR코드

DOI QR Code

Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect

폴리우레탄 폼의 비선형 압축거동을 모사하기 위한 밀도 영향이 고려된 수정 Gurson 모델의 제안

  • Lee, Jeong-Ho (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Park, Seong-Bo (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Seul-Kee (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Bang, Chang-Seon (Samsung Heavy Industries) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • Received : 2015.07.23
  • Accepted : 2015.09.18
  • Published : 2015.10.30

Abstract

Polyurethane Foam(PUF), a outstanding thermal insulation material, is used for various structures as being composed with other materials. These days, PUF composed with glass fiber, Reinforced PUF(R-PUF), is used for a insulation system of LNG Carrier and performs function of not only the thermal insulation but also a structural member for compressive loads like a sloshing load. As PUF is a porous material made by mixing and foaming, mechanical properties depend on volume fraction of voids which is a dominant parameter on density. Thus, In this study, density is considered as the effect parameter on mechanical properties of Polyurethane Foam, and mechanical behavior for compression of the material is described by using modified Gurson damage model.

뛰어난 단열성능을 가지는 폴리우레탄 폼(polyurethane foam, PUF)은 다양한 구조물에서 다른 재료들과 함께 사용되고 있다. 현재 LNG 운반선의 단열시스템에는 유리섬유로 강화된 폴리우레탄 폼(reinforced-polyurethane foam, R-PUF)이 사용되고 있으며, 이는 단열재 역할뿐만 아니라 슬로싱 하중을 포함한 다양한 압축하중에 대한 구조부재 기능을 수행하고 있다. 폴리우레탄 폼은 혼합과 발포를 통해 제작되는 다공성 재료이기 때문에, 본 연구에서는 기공체적비율을 통해 재료의 거동을 모사할 수 있는 Gurson damage model을 사용하여 폴리우레탄 폼의 비선형 압축거동을 모사하였으며, 폴리우레탄 폼의 기계적 성질에 영향을 미치는 영향변수로서 기공체적비율에 의존적으로 알려져 있는 밀도를 설정하였다.

Keywords

References

  1. Aravas, N. (1987) On The Numerical Integration of a Class Of Pressure-Dependent Plasticity Models, Int. J. Num. Methods Eng., 24, pp.1395-1416. https://doi.org/10.1002/nme.1620240713
  2. Degenstein, N.J. (2007) Spatially Resolved Species and Temperature Profiles in the Catalytic Partial Oxidation of Methane and Ethane, Ph.D. thesis, University of Minnesota, 421 Washington Ave. S.E.
  3. Fabrice, S.-M., Laurent, C., Cavaille, J.-Y. Emanuelle, C. (2006) Mechanical Properties of High Density Polyurethane Foams: I. Effect of the Density, Composit. Sci. & Tech., 66(15), pp.2700-2708. https://doi.org/10.1016/j.compscitech.2006.03.009
  4. Ihab, G., Valery, P., Raouf, I., Emmanuel, A. (2012) Temperature Effect on Non-Stationary Compressive Loading Response of Polymethacrylimide Solid Foam, Compos. Struct., 94, pp.3052-3063. https://doi.org/10.1016/j.compstruct.2012.04.022
  5. Lee, C.S., Kim, J.H., Kim, S.K., Ryu, D.M., Lee, J.M. (2015) Initial and Progressive Failure Analyses for Composite Laminates using Puck Failure Criterion and Damage-coupled Finite Element Method, Compos. Struct., 121, pp.406-419. https://doi.org/10.1016/j.compstruct.2014.11.011
  6. Lee, C.S., Kim, M.S., Park, S.B., Kim, J.H., Bang, C.S., Lee, J.M. (2015) A Temperature- and Strain-Rate-Dependent Isotropic Elasto-Viscoplastic Model for Glass-Fiber-Reinforced Polyurethane Foam, Mater. & Design, 84, pp.163-172. https://doi.org/10.1016/j.matdes.2015.06.086
  7. Lee, S.J., Yoon, Y.C., Cho, W.Y., Yu, S.M., Zi, G.S. (2009) Large Deformation Inelastic Analysis of API-X80 Steel Linepipes, J. Comput. Struct. Eng. Inst. Korea, 22(4), pp.363-370.
  8. Luo, H., Zhang, Y., Wang, B., Lu, H. (2010) Characterization of the Compressive behavior of Glass Fiber Reinforced Polyurethane Foam at Different Strain Rates, J. Offshore Mech. & Arctic Eng., 132(2), 021301. https://doi.org/10.1115/1.4000396
  9. Mclntyre, A., Anderton, G.E. (1979) Fracture Properties of a Rigid Polyurethane Foam over a Range of Densities, Polymer, 20(2), pp.247-253. https://doi.org/10.1016/0032-3861(79)90229-5
  10. Mohamed, A., Guenael, G., Philippe, D.S., Delphine, S. (2013) Numerical Integration of an Advanced Gurson Model for Shear Loading: Application to the Blanking Process, Comput. Mater. Sci., 72, pp.62-67. https://doi.org/10.1016/j.commatsci.2013.01.035
  11. Siegmann, A., Kenig, S., Alperstein, D., Narkis, M. (1983) Mechanical Behavior of Reinforced Polyurethane Foams, Polymer Composites, 3(2), pp.113-119.
  12. Thirumal, M., Dipak, K., Nikhil, K., Singha, B.S., Manjunath, Y.P.N. (2008) Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam, J. Appl. Polymer Sci., 108, pp.1810-1817. https://doi.org/10.1002/app.27712
  13. Tvergaard, V., Needleman, A. (1984) Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metallurgica, 32(1), pp.157-169. https://doi.org/10.1016/0001-6160(84)90213-X
  14. Yang, S.Y. (2010) Conversion of ABAQUS user Material Subroutines, J. Comput. Struct. Eng. Inst. Korea, 23(6), pp.635-640.

Cited by

  1. Effect of graphene oxide on mechanical characteristics of polyurethane foam vol.40, pp.6, 2016, https://doi.org/10.5916/jkosme.2016.40.6.493
  2. Comparative Study on Mechanical Behavior after Deformation Recovery of Polymeric Foam for Ships and Offshore Structures vol.53, pp.3, 2016, https://doi.org/10.3744/SNAK.2016.53.3.195
  3. Mechanical Behavior of Polymer Foam Reinforced with Silica Aerogel vol.31, pp.6, 2017, https://doi.org/10.26748/KSOE.2017.12.31.6.413