DOI QR코드

DOI QR Code

Cyclic Structural Characteristics of Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs

벽-슬래브 접합부에 매립된 열교차단장치의 반복하중에 대한 거동특성 평가

  • Shin, Dong-Hyeon (Department of Architectural Engineering, University of Seoul) ;
  • Oh, Moung-Ho (Department of Architectural Engineering, Mokpo National University) ;
  • Kim, Young-Ho (Jiseung Construction Innovation Company) ;
  • Kim, Hyung-Joon (Department of Architectural Engineering, University of Seoul)
  • Received : 2015.06.10
  • Accepted : 2015.07.03
  • Published : 2015.10.30

Abstract

The thermal bridge occurring in a building influences its thermal performance and durability. The domestic typical multi-unit residential buildings suffer thermal losses resulting from thermal bridges of the balcony slab. To minimize the thermal loss between inside and outside of the balcony slab, thermal bridge breaker(TBB) systems have been developed and applied in building construction. Although thermal bridge breaker systems for reinforced concrete(RC) wall-slab joints can improve the thermal performance of a building, it is necessary to verify the structural performance of TBB systems whether they provide proper resistance for cyclic loading. In order to investigate the structural characteristics of TBB systems embedded in RC slabs, cyclic tests of wall-slab joints were performed by applying two reversed cycles at each up to 30 cycles. The test results show that the RC slabs embedding TBBS systems can present excellent structural performance and the maximum moment capacity, energy dissipation capacity and ductility of TBBs systems are enhanced compared to those of the typical RC slabs.

건물외피 발생하는 열교현상은 건물의 단열성능 및 외피의 내구성에 영향을 미치며, 국내의 일반적인 주거형식인 공동주택의 발코니에 있어서 이러한 열교현상은 중요하게 고려되고 있다. 이와 같이 내 외부 발코니 슬래브 사이에서 발생하는 열교현상을 최소화하기 위한 목적으로 열교차단장치가 개발되었으며 다수의 건설현장에서 적용되고 있다. 철근콘크리트 슬래브 벽-슬래브 접합부에 열교차단장치를 적용함으로써 건물의 단열성능을 향상될 수 있으나 풍하중과 같은 양방향의 하중에 의해 열교차단장치 삽입부위가 적합한 구조성능을 확보하고 있는지에 대한 검증이 요구된다. 따라서 본 연구에서는 철근콘크리트 슬래브에 적용된 열교차단장치의 구조성능을 확인하기 위해 변위제어 방식으로 30 싸이클의 반복하중을 가력하였다. 열교차단장치가 삽입된 접합부는 요구되는 구조성능을 확보하며, 최대 모멘트강도, 에너지소산능력, 연성비가 기존의 철근콘크리트 슬래브와 비교하여 향상되는 것으로 나타났다.

Keywords

References

  1. ACI (2005) Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, ACI 374.1-05, American Concrete Institute, USA, pp.9.
  2. AIK (2009) Korean Building Code for Structures, KBC 2009, Architectural Institute of Korea, Seoul, pp.769.
  3. Cho, H.W., Bang, J.W., Han, B.C., Kim, Y.Y. (2011) Flexural Experiments on Reinforced Concrete Beams Strengthened with ECC and Strength Rebar, J. Korea Conc. Inst., 23(4), pp.503-509. https://doi.org/10.4334/JKCI.2011.23.4.503
  4. Keller, T., Riebel, F., Zhou, A. (2006) Multifunctional Hybrid GFRP/Steel Joint for Concrete Slab Structures, J. Compos. Constr., 10(6), pp.550-560. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(550)
  5. Kim, H.J., Choi, K.S., Shin, D.H. (2014) Experimental Tests of Composite Material used for Compression Joints in Thermal Bridge Breaker Systems, J. Eng.& Tech., 6(3), pp.190-193.
  6. Kim, Y.H., Kim, H.J., Lee, H.Y. (2013) Investigation and Analysis of Patents for the Thermal Bridge Breaker in Green Buildings, J. Korean Digit. Archi. & Inter. Assoc., 13(2), pp.35-43.
  7. Koo, B.K. (2011) Improvement of Korean Building Energy Regulation for Removing Thermal Bridge in the Apartment Building Envelop, Ph.D. Dissertation, Ewha Womans University, pp.199.
  8. KSA (2003) Tensile Strength Tests of the Steel Reinforcement, KS B 0802, Korean Standard Association, Seoul.
  9. KSA (2010) Compressive Strength Tests of the Concrete, KS F 2405, Korean Standard Association, Seoul.
  10. Lee, H.Y., Kim, H.K., Hong, S.J., Baek, Y.G. (2014) Development and Application of the Thermal Bridge Breaker for Preventing the Thermal Bridge Effect on the Apartment Buildings, J. Korean Soc. Living Environ. Sys., 21(3), pp.453-458. https://doi.org/10.21086/ksles.2014.06.21.3.453
  11. Lee, H.Y., Kim, Y.M., Choi, H.J., Choi K.S., Kang, J.S. (2014) Thermal Performance Assessment of the Heat Bridge-free Fasner, 2014 Summer Conference, J. Soc. Air-Cond. & Refrig. Eng. Korea, pp.665-666.
  12. Riebel, F., Keller, T. (2009) Structural Behavior of Multifunctional GFRP Joints for Concrete Structures, J. Constr.& Build. Mater., 23, pp.1620-1627. https://doi.org/10.1016/j.conbuildmat.2008.05.013
  13. Shin, D.H., Kim, Y.H., Kim, H.J. (2014) An Experimental Stdy on Structural Capacities of Thermal Bridge Breaker Systems Embedded in Cantilever Slabs, J. Archi. Inst. Korea, 30(9), pp.31-40.
  14. Wakili, K.G., Simmler, H., Frank, T. (2007) Experimental and Numerical Thermal Analysis of a Balcony Board with Integrated Glass Fiber Reinforced Polymer GFRP Elements, J. Energy & Build., 39, pp.76-81. https://doi.org/10.1016/j.enbuild.2006.05.002