DOI QR코드

DOI QR Code

An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis

전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가

  • Kim, Han-Soo (Division of Architecture, Konkuk Univ.) ;
  • Wee, Hae-Hwan (Department of Architectural Engineering, Graduate School, Konkuk Univ.)
  • 김한수 (건국대학교 건축학부) ;
  • 위해환 (건국대학교 대학원 건축공학과)
  • Received : 2015.05.11
  • Accepted : 2015.07.03
  • Published : 2015.10.30

Abstract

In this paper, the blast resisting performance of partially reinforced CFT columns was compared with the normal CFT columns to evaluate the effect of reinforcing with steel plates. Autodyn which is a specialized hydro-code for analysis of explosion and impact was used to simulate the structural behavior of the CFT columns under the blast loadings. The interaction between concrete and surrounding steel plates was modeled with friction and join option to represent the realistic damage of columns. According to the analysis, the partially reinforced CFT column showed enhanced blast resisting performance than the normal CFT columns. Also the improvement of blast resisting performance was depended on the height of reinforcing steel plates.

본 논문에서는 부분 보강된 CFT 기둥의 폭발저항성능을 일반 CFT 기둥과 비교하여 강판 보강의 효과를 확인하였다. 폭발하중을 받는 CFT 기둥의 구조해석에는 폭발과 충돌 해석을 위한 특수한 하이드로코드인 Autodyn을 사용하여 수치해석을 수행하였다. 콘크리트와 이를 둘러싸고 있는 강판 사이의 상호작용을 모델링하는 여러 방법이 있다. 본 연구에서는 기둥의 실제 파괴를 표현하기 위해 마찰 옵션 및 조인 옵션으로 모델링하였다. 해석에 따르면, 부분 보강된 CFT 기둥은 일반 CFT 기둥에 비해 더 나은 폭발저항효과를 나타내었다. 보강 CFT 기둥의 폭발저항성능은 콘크리트를 둘러싸고 있는 부분 보강된 강판의 높이가 높을수록 향상되었으며 CFT 기둥의 단면 크기 이상으로 보강할 것을 추천한다.

Keywords

References

  1. Ansys (2005) AUTODYN Theory Manual, Century Dynamics, p.235.
  2. Bao, X., Li, B. (2010) Residual Strength of Blast Damaged Reinforced Concrete Columns, Int. J. Impact Eng., 37, pp.295-308. https://doi.org/10.1016/j.ijimpeng.2009.04.003
  3. Chopra, A.K. (1995) Dynamics of Structures (Theory and Applications to Earthquake Engineering), Prentice Hall, p.876.
  4. Cho, M., Parmerter, R.R. (1992) An Efficient Higher Order Plate Theory for Laminated Composites, Compos. Struct., 20, pp.113-123. https://doi.org/10.1016/0263-8223(92)90067-M
  5. Cormie, D., Mays, G., Smith, P. (2009) Blast Effects on Buildings 2nd edition, Thomas telford, UK, pp.338.
  6. DoD (2010) Design of Buildings to Resist Progressive Collapse, U.S Department of Defense.
  7. Fujikura, S., Bruneau, M., Lopez-Garica, D. (2008) Experimental Investigation of Multihazard Resistant Bridge Piers Having Concrete-Filled Steel Tube under Blast Loading, J .Bridge Eng., 13, pp.586-594. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(586)
  8. GSA (2003) Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization, U.S General Services Administration.
  9. Ju, Y.T. (2005) Progressive Finite Element Analysis of Steel-Concrete Interface Behaviors with Two Phase Failure Mechanisms of Bond and Shear Slip, Doctoral thesis, Konkuk University, p.123.
  10. Kim, H.S., Park, J.P. (2010) An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section, J. Comput. Struct. Eng. Inst. Korea, 23(4), pp.387-394.
  11. Kim, H.S., Park, J.P. (2011) Evaluation of Blast Resistance Performance for CFT Columns by Using Computational Analysis, J. Archit. Inst, Korea Struct. & Constr., 27(3), pp.65-72.
  12. Kim, H.S., Ahn, H.S. (2014) Erosion Criteria for the Progressive Collapse Analysis of Reinforcement Concrete Structure due to Blast Load, J. Korea Concr. Inst, 26(3), pp.335-342. https://doi.org/10.4334/JKCI.2014.26.3.335
  13. Lee, T. (2008) Interface Behavior of Concrete Infilled Steel Tube Subjected to Flexure, Doctoral thesis, Konkuk University, p.137.
  14. Magnusson, J., Hansson, H. (2005) Numerical Simulations of Concrete Beams-A Principal Study, National Defence Research Establishment, Sweden, pp.63.
  15. Mutalib, A., Hao, H. (2011) Development of P-I Diagrams for FRP Strengthed RC Columns, Int. J. Impact Eng., 38, pp.290-304. https://doi.org/10.1016/j.ijimpeng.2010.10.029
  16. Nystrom, U., Gylltoft, K. (2009) Numerical Studies of The Combined Effects of Blast and Fragment Loading, International Journal of Impact Engineering, 6, pp.995-1005.
  17. Shi, Y., Hao, H., Li, Z. (2008) Numerical Derivation of Pressure-Impulse Diagrams for Prediction of RC Column Damage to Blast Loads, Int. J. Impact Eng., 35, pp.1213-1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001
  18. Smith, P.D., Hetherington, J.G. (1994) Blast and Ballistic Loading of Structure, Laxton's, Great Britain, pp.336.
  19. Wood, B.W. (2008) Experimental Validation of an Integrated FRP and Visco-Elastic Hardening, Damping and Wave-Modulating System for Blast Resistance Enhancement of RC Columns, pp.116.
  20. Wu, K., Li, B., Tsai, K. (2011) Residual Axial Compression Capacity of Localized Blast-Damaged RC Columns, Int. J. Impact Eng., 38, pp.29-40. https://doi.org/10.1016/j.ijimpeng.2010.09.002
  21. Zukas, J.A. (2004) Introduction to Hydrocodes, Elsevier, UK, pp.313