DOI QR코드

DOI QR Code

CMSX-10 단결정 초내열합금에서 거시편석에 따른 γ/γ' 응고조직 형성

Investigation of γ/γ' Growth by Macro Segregation in the Ni-Base Single Crystal Superalloy, CMSX-10

  • 윤혜영 (창원대학교 신소재공학부) ;
  • 성창훈 (창원대학교 신소재공학부) ;
  • 신종호 (두산중공업(주)) ;
  • 한승전 (재료연구소 소재실용화센터) ;
  • 이재현 (창원대학교 신소재공학부)
  • Yoon, Hyeyoung (Department of Materials Science and Engineering, Changwon National University) ;
  • Sung, Changhoon (Department of Materials Science and Engineering, Changwon National University) ;
  • Shin, Jongho (Doosan Heavy Industries & Construction Co. Ltd.) ;
  • Han, Seong Zeon (Industrial Support Technology Division, Korea Institute of Materials Science) ;
  • Lee, Jehyun (Department of Materials Science and Engineering, Changwon National University)
  • 투고 : 2015.07.26
  • 심사 : 2015.08.02
  • 발행 : 2015.09.27

초록

The ${\gamma}/{\gamma}^{\prime}$ two-phases, commonly known as a eutectic structure, are observed in the ${\gamma}$ interdendritic region of a Ni-base superalloy. However, the growth behavior of the ${\gamma}/{\gamma}^{\prime}$ two-phases, whether it is of eutectic or peritectic nature, has not been decidedly established. Directional solidifications were, thus, performed with the planar interface at a low growth rate of $0.5{\mu}m/s$ in order to promote macro segregation. Directional solidification started with the ${\gamma}$ planar interface and the ${\gamma}^{\prime}$ phase nucleated on the ${\gamma}$ planar interface at the solidification fraction of 0.75. The ${\gamma}/{\gamma}^{\prime}$ two-phases showed the ${\gamma}^{\prime}$ rod structure as major phase and the ${\gamma}$ minor phase between ${\gamma}^{\prime}$ rods, and the volume fraction of the ${\gamma}$ phase changed continuously with an increasing solidification fraction. The two-phase ${\gamma}/{\gamma}^{\prime}$ is seen as the coupled peritectic.

키워드

참고문헌

  1. Brij B. Seth, Superalloys 2000 (eds. T. M. Pollock et al.), pp.3, The Metallurgy Society of AIME, Warrendale, PA, USA (2000).
  2. W. S. Walston et al., Superalloys 1996 (eds. R.D. Kissinger et al.), pp.27, The Metallurgy Society of AIME, Warrendale, PA, USA (1996).
  3. G. L. Erickson, J. Metals., 47, 36 (1995).
  4. N. D'Souza, H. B. Dong, M. G. Ardakani, and B. A. Shollock, Scripta Mater., 53, 729 (2005). https://doi.org/10.1016/j.scriptamat.2005.05.012
  5. N. D'Souza and H. B. Dong, Scripta Mater., 56, 41 (2007). https://doi.org/10.1016/j.scriptamat.2006.08.060
  6. B. C. Wilson, E. R. Cutler and G. E. Fuchs, Mater. Sci. Eng. A., 479, 356 (2008). https://doi.org/10.1016/j.msea.2007.07.030
  7. N. Warnken, D. Ma, M. I. Steinbach, Mater. Sci. Eng. A., 267, 413 (2005).
  8. G. Brewster, H. B. Dong, N. B. Green, N. D'Souza, Met. Mat. Trans. B., 39B, 87 (2008).
  9. J. H. Lee, J. D. Verhoeven, J. Crystal Growth., 144, 353 (1994). https://doi.org/10.1016/0022-0248(94)90477-4
  10. W. J. Boettinger, Metall. Mater. Trans., 5, 2023 (1974). https://doi.org/10.1007/BF02644495
  11. R. Trivedi, Metall. Mater. Trans. A., 26, 1583 (1995). https://doi.org/10.1007/BF02647608
  12. Y Su, D Liu, X Li, L Luo, J Guo, and H Fu, Metall. Mater. Trans. A., 43, 4220 (2012).
  13. S. Dobler, T. S. Lo, M. Plapp, A. Karma, and W. Kurz, Acta Mater., 52, 2795 (2004). https://doi.org/10.1016/j.actamat.2004.02.026
  14. J. H. Gu, H. M. Jung, J. S. Lee, H. Y. Yoon, S. M. Seo, C. Y. Jo and J. H. Lee, Korean J. Met. Mater., 51, 203 (2013).
  15. W. Kurz and D. J. Fisher, Fundamentals of Soldification, pp.95, Trans Tech Publications Ltd, Switzerland (1989).
  16. R. C. Reed, The Superalloy: Fundamentals and Applications, pp.45, Cambridge University Press, Cambridge, UK (2006).
  17. R. Trivedi, and J. S. Park, J. Crystal Growth., 235, 572 (2002). https://doi.org/10.1016/S0022-0248(01)01803-6