DOI QR코드

DOI QR Code

Spatially Scalable Kronecker Compressive Sensing of Still Images

공간 스케일러블 Kronecker 정지영상 압축 센싱

  • Nguyen, Canh Thuong (College of Information & Communication Engineering, Sungkyunkwan University) ;
  • Jeon, Byeungwoo (College of Information & Communication Engineering, Sungkyunkwan University)
  • ;
  • 전병우 (성균관대학교 정보통신대학)
  • Received : 2015.07.14
  • Accepted : 2015.10.06
  • Published : 2015.10.25

Abstract

Compressive sensing (CS) has to face with two challenges of computational complexity reconstruction and low coding efficiency. As a solution, this paper presents a novel spatially scalable Kronecker two layer compressive sensing framework which facilitates reconstruction up to three spatial resolutions as well as much improved CS coding performance. We propose a dual-resolution sensing matrix based on the quincunx sampling grid which is applied to the base layer. This sensing matrix can provide a fast-preview of low resolution image at encoder side which is utilized for predictive coding. The enhancement layer is encoded as the residual measurement between the acquired measurement and predicted measurement data. The low resolution reconstruction is obtained from the base layer only while the high resolution image is jointly reconstructed using both two layers. Experimental results validate that the proposed scheme outperforms both conventional single layer and previous multi-resolution schemes especially at high bitrate like 2.0 bpp by 5.75dB and 5.05dB PSNR gain on average, respectively.

압축센싱 기술이 직면하고 있는 두 가지의 도전과제는 복원 알고리즘의 연산 복잡도 개선과 부호화 효율 향상 문제이다. 이에 대한 해결방안으로, 본 논문은 최대 3 가지의 공간 해상도 조절 및 향상된 압축센싱 부호화 성능을 가능하게 하는 공간 스케일러블 Kronecker 압축센싱 구조를 제안한다. 제안 방법의 기저 계층(base layer)에서는 quincunx 샘플링 격자에 기반 하는 듀얼-해상도 센싱 행렬을 사용한다. 해당 센싱 행렬은 낮은 해상도의 영상에 대한 고속-프리뷰(preview) 기능을 가능케 한다. 향상 계층(enhancement layer)에서는 획득한 측정값과 예측 측정값 간의 잔차 측정값을 부호화 한다. 복원과정에서는 기저 계층으로부터 낮은 해상도의 복원 영상을 획득 할 수 있는 반면, 두 개의 계층을 모두 사용하여 복원하는 경우 높은 해상도의 영상을 획득할 수 있다. 실험 결과, 제안하는 구조가 종래의 단일 계층방법 및 다중-해상도 기반 구조에 비해, 2.0bpp일 때 PSNR 성능이 각각 5.75dB 및 5.05dB 더 향상됨을 확인하였다.

Keywords

References

  1. D. Donoho, "Compressed sensing," IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, 2006. https://doi.org/10.1109/TIT.2006.871582
  2. J. Romberg, "Imaging via compressive sampling," IEEE Sig. Process. Mag., pp. 14-20, Mar. 2008.
  3. S. Mun and E. Fowler, "Block compressed sensing of images using directional transforms," in Proc. IEEE Intern. Conf. on Image Process (ICIP), pp. 3021-3024, USA, 2009.
  4. K. Q. Dinh, H. J. Shim, and B. Jeon, "Measurement coding for compressive imaging based on structured measurement matrix," in Proc. IEEE Intern. Conf. on Image Process. (ICIP), pp. 10-13, Sep. 2013.
  5. M. Duarte and R. Baraniuk, "Kronecker compressive sensing," IEEE Trans. Image Process., vol.21, no.2, pp. 494-504, Feb., 2012. https://doi.org/10.1109/TIP.2011.2165289
  6. T. Goldstein and S. Osher, "The split Bregman method for L1 regularized problems," SIAM J. on Imaging Sci., vol. 2, no. 2, pp. 323-343, Apr., 2009. https://doi.org/10.1137/080725891
  7. S. Shishkin, H. Wang, and G. Hagen, "Total variation minimization with separable sensing operator," in Proc. Conf. on Image and Signal Process.(ICISP), pp. 86-93, Jan., 2010.
  8. T. N. Canh, K. Q. Dinh, and B. Jeon, "Detail preserving compressive sensing recovery based on cartoon texture image decomposition," in Proc. IEEE Inter. Conf. Imag. Process., (ICIP), pp. 1327 - 1331, Oct. 2014.
  9. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3D transform - domain collaborative filtering," IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, Aug., 2007. https://doi.org/10.1109/TIP.2007.901238
  10. Y. Kim, H. Oh, and A. Bilgin, "Video compressed sensing using iterative self-similarity modeling and residual reconstruction," J. of Electron. Imaging, vol. 22. no.2, pp. 021005, Jan., 2013. https://doi.org/10.1117/1.JEI.22.2.021005
  11. A. Sankaranarayanan, C. Studer, and R. Baraniuk, "CS-MUVI: Video compressive sensing for spatial-multiplexing cameras," in Proc. IEEE Inter. Conf. Computational Photography, pp. 1-10, Apr. 2012.
  12. A. Sankaranarayanan, L. Xu, C. Studer, Y. Li, K. Kelly, and R. Baraniuk, "Video compressive sensing for spatial multiplexing cameras using motion-flow models," Avaiable at Arxiv.org (arXiv:1503.02727).
  13. T. N. Canh, K. Q. Dinh, and B. Jeon, "Multi-resolution Kronecker Compressive Sensing," IEIE Trans. Smart. Sig. Comp., vol.3, no. 1, pp.19-27, Feb. 2014.
  14. T. Goldstein, L. Xu, K. F. Kelly, and R. G. Baraniuk, "The STONE transform: multi-resolution image enhancement and real-time compressive video," Available at Arxiv.org (arXiv:1311.3405), 2013.
  15. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, "Single-pixel imaging via compressive sampling," IEEE Signal Process. Mag., vol. 25, pp. 83-91, Mar., 2008. https://doi.org/10.1109/MSP.2007.914730
  16. S. Xiang and L. Cai, "Scalable video coding with compressive sensing for wireless videocast," in Proc. IEEE Inter. Conf. on Comm., pp. 1-5, Jun., 2011.
  17. H. Jiang, C. Li, R. Haimi-Cohen, P. A. Wilford, and Y. Zhang, "Scalable video coding using compressive sensing," J. Bell Labs Tech., vol.16, no.4, pp.149-170, 2012. https://doi.org/10.1002/bltj.20539
  18. D. Valseia and E. Magli, "Spatially scalable compressed image sensing with hybrid transform and inter-layer prediction model," in Proc. IEEE Inter. Work. on Mul. Signal Process, pp. 373-378, Sept., 2013.
  19. M. Davenport, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "A simple proof that random matrices are democratic", Available at Arxiv.org (arXiv:0911.0736v1), 2009.
  20. A. Ashok and M. A. Neifeld, "Compressive imaging: hybrid measurement basis design," J Opt. Soc. Am. A, vol. 28, no. 6, pp. 1041-1050, Jun., 2011. https://doi.org/10.1364/JOSAA.28.001041
  21. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, "Image quality assessment: From error measurement to structural similarity," IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, 2004. https://doi.org/10.1109/TIP.2003.819861
  22. R. Baraniuk, M. Davenport, R. de Vore, and M. Wakin, "A simple proof of the Restricted Isometry Property for random matrices," Springer J. Constructive Approximation, vol. 28, no. 3, pp. 253-263, Jan., 2008. https://doi.org/10.1007/s00365-007-9003-x
  23. S. Park, H. N. Lee, and S. Park, "Introduction to Compressed Sensing," The Magazine of the IEEK, vol. 38, pp. 19-30, Aug., 2011.
  24. H. Lee, S. Kwon, B. Shim, "Reweighted L1-Minimization via Support Detection," Journal of the Institute of Electronics Engineers of Korea, Vol. 48, no. 2, pp. 134-140, Mar. 2011.