DOI QR코드

DOI QR Code

Laser-Driven Peeling of the Photoresist-Protective Film of a Printed Circuit Board

인쇄회로기판 감광층 보호필름의 레이저 유도 박리

  • Min, Hyung Seok (Department of Materials Science and Engineering, Yonsei University) ;
  • Heo, Jun Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Jee Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Myeongkyu (Department of Materials Science and Engineering, Yonsei University)
  • 민형석 (연세대학교 신소재공학과) ;
  • 허준연 (연세대학교 신소재공학과) ;
  • 이지영 (연세대학교 신소재공학과) ;
  • 이명규 (연세대학교 신소재공학과)
  • Received : 2015.04.29
  • Accepted : 2015.08.11
  • Published : 2015.10.25

Abstract

In this paper we show that the photoresist-protective film of a printed circuit board (PCB) can be delaminated from the underlying photoresist layer by a single pulse of a nanosecond laser at 532 nm. After locally peeling the edge of the PCB with a laser beam of 9 mm size, Scotch tape was attached to the irradiated region to peel off the whole protective film. For a certain range of pulse energies the peeling probability was 100%, without leaving any damage. Since the use of a laser in initial delamination is noncontact and nondamaging, it may be more efficiently utilized in the PCB industry than the conventional knurling method based on mechanical pressing.

본 논문에서는 인쇄회로기판의 감광층 보호필름을 532 nm 파장의 나노초 레이저의 단일펄스로 박리할 수 있음을 보여준다. 인쇄회로기판의 가장자리를 9 mm 크기의 레이저 빔으로 국부적으로 박리시킨 후 스카치테이프를 레이저 조사에 의해 초기 박리 된 영역에 붙여 전체 보호필름을 떼어내었는데, 160 - 170 mJ의 펄스에너지 범위에서는 10회의 반복된 실험 모두에서 감광층 손상 없는 박리에 성공하였다. 보호필름 초기 박리에 레이저를 사용하는 방식은 기계적 압착에 바탕을 둔 기존의 널링방식과는 달리 감광층에 손상을 유발하지 않는 비접촉 방식으로써, 인쇄회로기판 제조공정에 보다 효율적으로 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. J. Lee, C. Curran, and K. Watkins, "Laser removal of copper particles from silicon wafers using UV, visible and IR radiation," Applied Physics A: Materials Science & Processing 73, 219-224 (2001). https://doi.org/10.1007/s003390100685
  2. M. Arronte, P. Nerves, and R. Vilar, "Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces," J. Appl. Phys. 92, 6973-6982 (2002). https://doi.org/10.1063/1.1513190
  3. G. Vereecke, E. Rohr, and M. Heyns, "Laser-assisted removal of particles on silicon wafers," J. Appl. Phys. 85, 3837-3843 (1999). https://doi.org/10.1063/1.369754
  4. D. Willis and V. Grosu, "Microdroplet deposition by laser-induced forward transfer," Appl. Phys. Lett. 86, 244103-1-3 (2005). https://doi.org/10.1063/1.1944895
  5. H. Kim, H. Shin, J. Ha, and M. Lee, "Optical patterning of silver nanoparticle Langmuir-Blodgett films," J. Appl. Phys. 102, 083505-1-4 (2007). https://doi.org/10.1063/1.2794971
  6. H. Shin, H. Kim, H. Lee, H. Yoo, J. Kim, H. Kim, and M. Lee, "Photoresist-free lithographc patterning of solution-processed nanostructured metal thin films," Adv. Mater. 20, 3457-3461 (2008). https://doi.org/10.1002/adma.200800157
  7. H. Yoo, H. Shin, B. Shim, S. Kim, and M. Lee, "Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force," Nanotechnology 20, 245301-1-6 (2009). https://doi.org/10.1088/0957-4484/20/24/245301
  8. H. Shin, H. Lee, J. Sung, and M. Lee, "Parallel laser printing of nanoparticulate silver thin film patterns for electronics," Appl. Phys. Lett. 92, 233107-1-3 (2008). https://doi.org/10.1063/1.2944232