DOI QR코드

DOI QR Code

CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria

  • Khan, Shams Tabrez (Department Zoology, King Saud University) ;
  • Wahab, Rizwan (Department Zoology, King Saud University) ;
  • Ahmad, Javed (Department Zoology, King Saud University) ;
  • Al-Khedhairy, Abdulaziz A. (Department Zoology, King Saud University) ;
  • Siddiqui, Maqsood A. (Department Zoology, King Saud University) ;
  • Saquib, Quaiser (Department Zoology, King Saud University) ;
  • Ali, Bahy A. (Department Zoology, King Saud University) ;
  • Musarrat, Javed (Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University)
  • Received : 2014.11.16
  • Accepted : 2015.01.27
  • Published : 2015.10.01

Abstract

Envisaging the role of Co in theranautics and biomedicine it is immensely important to evaluate its antimicrobial activity. Hence in this study CoO thin nanosheets (CoO-TNs) were synthesized using wet chemical solution method at a very low refluxing temperature ($90^{\circ}C$) and short time (60 min). Scanning electron microscopy of the grown structure revealed microflowers ($2{\sim}3{\mu}m$) composed of thin sheets petals (60~80 nm). The thickness of each individual grown sheet varies from 10~20 nm. Antimicrobial activities of CoO-TNs against two Gram positive bacteria (Micrococcus luteus, and Staphylococcus aureus), and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were determined. A 98% and 65% growth inhibition of M. luteus and S. aureus respectively, was observed with $500{\mu}g/ml$ of CoO-TNs compared to 39 and 34% growth inhibition of E. coli and P. aeruginosa, respectively with the same concentration of CoO-TNs. Hence, synthesized CoO-TNs exhibited antimicrobial activity against Gram negative bacteria and an invariably higher activity against tested Gram positive bacteria. Therefore, synthesized CoO-TNs are less prone to microbial infections.

Keywords

References

  1. O. V. Salata, J. Nanobiotechnol., 2, 1(2004). https://doi.org/10.1186/1477-3155-2-1
  2. N. Sanvicens and M. P. Marco, Trends Biotechnol., 26, 425(2008). https://doi.org/10.1016/j.tibtech.2008.04.005
  3. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, Hum Mutat., 83, 761(2008).
  4. S. T. Khan, M. Ahamed, J. Musarrat, and A. A. Al-Khedhairy, Eur. J. Oral Sci., 123, 397(2014).
  5. H. Kim, K. H. Baik, J. Kim, and S. Jang, Korean Chem. Eng. Res., 51, 292(2013). https://doi.org/10.9713/kcer.2013.51.2.292
  6. D. T. Nguyen and K.-S. Kim, Korean J. Chem. Eng., 31, 1289(2014). https://doi.org/10.1007/s11814-014-0156-6
  7. A. Akberzadeh, M. Samiei, and S. Davaran, Nanoscale Res Lett., 7, 144(2012). https://doi.org/10.1186/1556-276X-7-144
  8. K. Wang, J. J. Xu, and H. Y. Chen, Biosens. Bioelectron., 20, 1388(2005). https://doi.org/10.1016/j.bios.2004.06.006
  9. Q. M. Kainz, S. Fernandes, C. M. Eichenseer, F, Besostri, H. Korner, R. Muller, and O. Reiser, Faraday Discuss., (2014).
  10. J. R. Thomas, J. Appl. Phys., 37, 2914(1966). https://doi.org/10.1063/1.1782154
  11. D. P. Dinega, M. G. Bawendi, and Angew, Chem. Int. Ed., 38, 1788(1999). https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1788::AID-ANIE1788>3.0.CO;2-2
  12. T. O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M. J. Casanove, A. Mosset, M. Respaud, and J. M. Broto, J. Phys. Chem. B, 104, 695(2000). https://doi.org/10.1021/jp9924427
  13. J. Devanneaux and J. Maurin, J. Catal., 69, 202(1981). https://doi.org/10.1016/0021-9517(81)90142-1
  14. Y. Teng, H. Sakurai, A. Ueda, and T. Kobayashi, Int. J. Hydrogen Energy, 24, 355(1999). https://doi.org/10.1016/S0360-3199(98)00083-4
  15. J. S. Chen, T. Zhu, Q. H. Hu, J. Gao, F. Su, S. Z. Qiao, and X. W. Lou, ACS Appl. Mater. Interfaces, 2, 3628(2010). https://doi.org/10.1021/am100787w
  16. D. S. Wang, X. L. Ma, Y. G. Wang, L. Wang, Z. Y. Wang, W. Zheng, X. M. He, J. Li, Q. Peng, and Y. Li, Nano Res., 3, 1-7(2010). https://doi.org/10.1007/s12274-010-1001-9
  17. Y. Zhang, J. Zhu, X. Song, and X. Zhong, J. Phys. Chem. C, 112, 5322(2008). https://doi.org/10.1021/jp709943x
  18. G. P. Glaspell, P. W. Jagodzinski, and A. Manivannan, J. Phys. Chem. B, 108, 9607(2004).
  19. J. Cordero, L. Munuera, and M. D. Folgueira, J. Bone Joint Surg. Br., 76, 717(1994).
  20. J. W. Costerton, L. Montanaro, and C. R. Arciola, Int. J. Artif., Organs, 28, 1062(2005). https://doi.org/10.1177/039139880502801103
  21. G. M. Nazeruddin and Y. I. Shaikh, RJPBCS, 5, 225(2014).
  22. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and S. S. Habib, Int. J. Nanomed., 7, 6003(2012).
  23. M. Khan, S. T. Khan, M. Khan, S. F. Adil, J. Musarrat, A. A. Al-Khedhairy, A. Al-Warthan, M. R. Siddiqui, and H. Z. Alkhathlan, Int. J. Nanomed., 28, 3551(2014).
  24. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan, Nanomed., 7, 184(2011). https://doi.org/10.1016/j.nano.2010.10.001
  25. A. Hassen, N. Saidi, M. Cherif, and A. Boudabous, Bioresour. Technol., 65, 73(1998). https://doi.org/10.1016/S0960-8524(98)00011-X
  26. H. Nikaido, Microbiol. Mol. Biol. Rev., 67, 593(2003). https://doi.org/10.1128/MMBR.67.4.593-656.2003

Cited by

  1. “Miswak” Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis vol.21, pp.11, 2016, https://doi.org/10.3390/molecules21111478
  2. Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability vol.9, pp.33, 2017, https://doi.org/10.1021/acsami.7b06867