DOI QR코드

DOI QR Code

Effects of Trampling on Growth and Development in Zoysia japonica

답압이 한국잔디의 생육에 미치는 영향

  • Seo, Jin Yeol (Department of Agronomy, Gyeongsang National University) ;
  • Chung, Jong Il (Department of Agronomy, Gyeongsang National University) ;
  • Kim, Min Chul (Department of Agronomy, Gyeongsang National University) ;
  • Chung, Jung Sung (Department of Agronomy, Gyeongsang National University) ;
  • Shim, Doo Bo (Department of Agronomy, Gyeongsang National University) ;
  • Song, Seon Hwa (Department of Agronomy, Gyeongsang National University) ;
  • Oh, Ji Hyun (Department of Agronomy, Gyeongsang National University) ;
  • Shim, Sang In (Department of Agronomy, Gyeongsang National University)
  • 서진열 (경상대학교 농업생명과학대학 농학전공) ;
  • 정종일 (경상대학교 농업생명과학대학 농학전공) ;
  • 김민철 (경상대학교 농업생명과학대학 농학전공) ;
  • 정정성 (경상대학교 농업생명과학대학 농학전공) ;
  • 심두보 (경상대학교 농업생명과학대학 농학전공) ;
  • 송선화 (경상대학교 농업생명과학대학 농학전공) ;
  • 오지현 (경상대학교 농업생명과학대학 농학전공) ;
  • 심상인 (경상대학교 농업생명과학대학 농학전공)
  • Received : 2015.04.27
  • Accepted : 2015.06.23
  • Published : 2015.09.30

Abstract

Trampling stress in turfgrass fields caused by traffics often occurs in zoysiagrass (Zoysia japonica) fields including golf course. In order to know the influences of trampling stress on the growth and development of turfgrass, leaf and root growth, chlorophyll fluorescence, chlorophyll content and 2-DE protein analysis were conducted in the turfgrass plants subjected to various levels of trampling stress from 0 to $9,420J\;day^{-1}$ day. Shoot growth was more highly inhibited by trampling stress than root growth. Although root growth was affected by trampling with weak intensity, the highest root length was observed in the turfgrass treated with weak trampling ($1,570J\;day^{-1}$). Chlorophyll fluorescence (Fv $Fm^{-1}$) was drastically lowered by trampling stress with moderate intensity. Leaf number showed similar tendency with leaf greenness. The number was decreased as the trampling intensity was increased. Shoot dry weight was decreased showing a similar tendency with the result of shoot length. The specific protein expressions under weak trampling were related to the functions of stress amelioration. Heat shock 70 kDa protein 10 and oxygen-evolving enhancer protein 1 were the proteins increased positively under trampling stress.

답압스트레스는 골프장 등에 한국잔디(Zoysia japonica)로 조성된 잔디밭에서 인간의 이동, 농기계나 차량의 이동 등에서 종종 발생한다. 본 연구는 잔디의 생육에 답압 스트레스가 미치는 영향을 알아보기 위하여 무답압(0 J $day^{-1}$), 약답압(1,570 J $day^{-1}$), 중답압(4,710 J $day^{-1}$), 강답압(9,420 J $day^{-1}$) 4수준의 답압조건에서 지상부와 지하부 길이, 광합성 능력, 엽수, 건물중, 2-DE 단백질 분석을 실시하였다. 지상부 길이는 답압을 주게 되면 답압을 하지 않은 무처리구 비해 급격하게 줄어들었고, 답압의 충격량이 증가할수록 길이가 짧아지는 경향을 나타냈다. 지하부 길이는 답압을 한 처리구가 답압을 하지 않은 무처리구 보다 길이가 길었고, 그 중 약답압을 한 처리구에서 가장 길었다. 광합성 능력은 답압을 주게 되면 답압의 충격량이 증가할수록 감소하는 경향을 나타내었다. 엽수는 답압을 하지 않은 무처리구에서 가장 많이 나왔고, 답압의 충격량이 증가할수록 감소하는 경향을 나타내었다. 지상부 건물중은 답압이 증가할수록 감소하는 것으로 확인 되었고, 중답압과 강답압에서는 큰 차이를 보이지 않았다. 한국잔디에 답압을 주게 되면 그에 따른 스트레스에 적응하기 위해 반응하는 단백질이 발현되었다. 단백질 변성을 막아주는 heat shock 70 kDa protein 10와 광합성에 관련된 Oxygen-evolving enhancer protein 1이 발현이 증가 되었다. 이상 종합해보면 답압 조건에 따른 한국잔디의 생육에 차이가 있었으며, 일정수준의 답압이 잔디 생육에 있어서 지상부 생육은 답압하지 않은 것보다 저조 하였으나 지하부 생육은 다소 촉진되었다.

Keywords

References

  1. Asady, G.H. and Smucker, A.J.M. 1989. Compaction and root modification of soil aeration. Soil Sci. Soc. Am. J. 53:251-254. https://doi.org/10.2136/sssaj1989.03615995005300010045x
  2. Bidadi, H., Yamaguchi, S., Asahina, M. and Satoh, S. 2010. Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana. Plant Root 4:4-10. https://doi.org/10.3117/plantroot.4.4
  3. Birchmeier, W. and Behrens, J. 1994. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochem. Biophys. Acta. 1198:11-26.
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Carrow, R.N. 1980. Influence of soil compaction on three turfgrass species. Agron. J. 72:1038-1042. https://doi.org/10.2134/agronj1980.00021962007200060041x
  6. DaCosta, M. and Huang, B. 2006. Changes in carbon partitioning and accumulation patterns during drought and recovery for colonial bentgrass, creeping bentgrass, and velvet bentgrass, J. Amer. Soc. Hort. Sci. 131:484-490.
  7. Ellis, J. 1987. Proteins as molecular chaperones. Nature 328:378-379. https://doi.org/10.1038/328378a0
  8. Engelke, M.C., Murrary, J.J. and Yeam, D.Y. 1983. Distribution, collection and use of zoysiagrass in the far east, part II. Agron. p. 125. (Abstr.).
  9. Forsthoefel, N.R., Vernon, D.M. and Cushman, J.C. 1995. A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Plant Mol. Biol. 29:213-226. https://doi.org/10.1007/BF00043647
  10. Fukuoka, H. 1997. Breeding of zoysia in Japan. International symposium of zoysiagrass breeding. Dankook Univ. Cheonan, Korea. pp. 1-8.
  11. Glab, T. and Szewczyk, W. 2014. Influence of simulated traffic and roots of turfgrass species on soil pore characteristics. Geoderma 230:221-228.
  12. Glab, T., Szewczyk, W., Dubas, W., Kowalik, K. and Jezierski, T. 2015. Anatomical and morphological factors affecting wear tolerance of turfgrass. Sci. Hortic. 185:1-13. https://doi.org/10.1016/j.scienta.2015.01.013
  13. Hippo, Y., Taniguchi, H., Tsutsumi, S., Machida, N. and Chong, J.M., et al. 2002. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 62:233-240.
  14. Kim, K.N. and Nam, S.Y. 2003. Comparison of early germinating vigor, germination speed and germination rate of varieties in Poa pratensis L., Lolium perenne L. and Festuca arundinacea Schreb. grown under different growing conditions. Kor. Turfgrass Sci. 17:1-12. (In Korean)
  15. Kim, K.N. and Nam, S.Y. 2005. Seasonal differences in turf quality of Kentucky bluegrass, perennial ryegrass, tall fescue and mixtures grown under a pure sand of USGA system. Kor. Turfgrass Sci. 19:151-160. (In Korean)
  16. Kuniyasu, H., Yasui, W., Kitadai, Y., Yokozaki, H., Ito, H., et al. 1992. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem. Biophys Res. Commun. 189:227-232. https://doi.org/10.1016/0006-291X(92)91548-5
  17. Lal, S.K., Lee, C. and Sachs, M.M. 1998. Differential regulation of enolase during anaerobiosis in maize. Plant Physiol. 118:1285-1293. https://doi.org/10.1104/pp.118.4.1285
  18. Lee, J.H., Son, J.S., Kim, I.C. and Joo, Y.K. 2007. Effects of a forced air-flow system for recovery of turfgrass after intensive traffic injury. Kor. Turfgrass Sci. 20:127-136. (In Korean)
  19. Lee, S.W., Lee, J.P. and Kim, D.H. 2008. The influence of traffic time and fertilizer type on the quality of golf course putting greens. Kor. Turfgrass Sci. 22:65-74. (In Korean)
  20. Matsumoto, T., Tanaka, T., Sakai, H., Amano, N., Kanamori, H., et al. 2011. Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol. 156:20-28. https://doi.org/10.1104/pp.110.171579
  21. Musrati, R.A., Kollarova, M., Mernik, N. and Mikulasova, D. 1998. Malate dehydrogenase: distribution, function and properties. Gen. Physiol. Biophys. 17:193-210.
  22. Myung, J.K., Krapfenbauer, K., Weitzdoerfer, R., Peyrl, A., Fountoulakis, M., et al. 2003. Expressional patten of chaperones in neuronal, glial, amnion, mesothelial, and bronchial epithelial cell lines. Mol. Genet. Metab. 80:444-450. https://doi.org/10.1016/j.ymgme.2003.09.005
  23. Nagai, A., Ward, E., Beck, J., Tada, S., Chang, J.Y., et al. 1991. Structural and functional conservation of histidinol dehydrogenase between plants and microbes. Proc. Natl. Acad. Sci. U.S.A. 88:4133-4137. https://doi.org/10.1073/pnas.88.10.4133
  24. Park, W.S., Oh, R.R., Park, J.Y., Lee, S.H., Shin, M.S., et al. 1999. Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res. 59:4257-4260.
  25. Schmelz, E.A., Carroll, M.J., Leclere, S., Phipps, S.M., Meredith, J., et al. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proc. Natl. Acad. Sci. U.S.A. 103:8894-8899. https://doi.org/10.1073/pnas.0602328103
  26. Wang, W., Rai, R. and Chen, S. 2008. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Sep. Sci. 31:2032-2039. https://doi.org/10.1002/jssc.200800087
  27. Yokozaki, H., Yasui, W. and Tahara, E. 2001. Genetic and epigenetic changes in stomach cancer. Int. Rev. Cytol. 204:49-95. https://doi.org/10.1016/S0074-7696(01)04003-7
  28. Yu, J., Wang, J., Lin, W., Li, S., Li, H., et al. 2005. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3:266-281. https://doi.org/10.1371/journal.pbio.0030266

Cited by

  1. Growth and Quality Changes of Creeping Bentgrass by Application of Liquid Fertilizer Containing Silicate vol.5, pp.3, 2016, https://doi.org/10.5660/WTS.2016.5.3.170