DOI QR코드

DOI QR Code

Resistivity Variation of Nickel Oxide by Substrate Heating in RF Sputter for Microbolometer

  • Lee, Yong Soo (Institute of Semiconductor Fusion Technology, College of Engineering, Kyungpook National Unversity)
  • 투고 : 2015.07.31
  • 심사 : 2015.09.18
  • 발행 : 2015.09.30

초록

Thin nickel oxide films formed on uncooled and cooled $SiO_2/Si$ substrates using a radio frequency (RF) magnetron sputter powered by 200 W in a mixed atmosphere of argon and oxygen. Grazing-incidence X-ray diffraction and field emission scanning electron microscopy are used for the structural analysis of nickel oxide films. The electrical conductivity required for better bolometric performance is estimated by means of a four-point probe system. Columnar and (200) preferred orientations are discovered in both films regardless of substrate cooling. Electric resistivity, however, is greatly influenced by the substrate cooling. Oxygen partial pressure increase during the nickel oxide deposition leads to a rapid decrease in resistivity, and the resistivity is higher in the cooled nickel oxide samples. Even when small microstructure variations are applied, lower resistivity in favor of low noise performance is acquired in the uncooled samples.

키워드

참고문헌

  1. E. Fujii, A. Tomozawa, H. Torii and R. Takayama, "Preferred orientations of NiO films prepared by plasmaenhanced metalorganic chemical vapor deposition", Jpn. J. Appl. Phys., Vol. 35, pp. L328-L330, 1996. https://doi.org/10.1143/JJAP.35.L328
  2. H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films, Vol. 236, pp. 27, 1993. https://doi.org/10.1016/0040-6090(93)90636-4
  3. S. Yamada, T. Yoshioka, M. Miyashita, K. Urabe and M. Kitao, J. Appl. Phys., Vol. 63, pp. 2116, 1988. https://doi.org/10.1063/1.341066
  4. K. Yoshimura, T. Miki and S. Tanemura, Jpn. J. Appl. Phys., Vol. 34, pp. 2440, 1995. https://doi.org/10.1143/JJAP.34.2440
  5. H. Kumagai, M. Matsumoto, K. Toyoda and M. Obara, J. Mater. Sci. Lett., Vol. 15, pp. 2081, 1996.
  6. H. W. Ryu, G. P. Choi, W. S. Lee and J. J. Park, J. Mater. Sci. Lett., Vol. 39, pp. 4375, 2004. https://doi.org/10.1023/B:JMSC.0000033431.52659.e5
  7. H. L. Chen, Y. M. Lu, W. S. Hwang, Surface & Coatings Technology, Vol. 198, pp. 138, 2005. https://doi.org/10.1016/j.surfcoat.2004.10.032
  8. A. M. Reddy, A. S. Reddy, K. S. Lee and P. S. Reddy, Ceramics International, Vol. 37, pp. 2837, 2011. https://doi.org/10.1016/j.ceramint.2011.04.121
  9. E. Fujii, A. Tomozawa, S. Fujii, H. Torii, M. Hattore and R. Takayama, Jpn. J. Appl. Phys., Vol. 32, pp. L1448, 1993. https://doi.org/10.1143/JJAP.32.L1448
  10. O. Kohmoto, H. Makagawa, F. Ono and A. Chayahara, J. Magn. & Magn. Mater., Vol. 226-230, pp. 1627, 2001. https://doi.org/10.1016/S0304-8853(00)01042-8
  11. Y. M. Lu, W. S. Hwang and J. S. Yang, Surf. Coat. Technol., Vol. 155, pp. 231, 2002. https://doi.org/10.1016/S0257-8972(02)00037-3
  12. Y. M. Lu, W. S. Hwang, W. Y. Liu, J. S. Yang, Thin Solid Films, Vol. 54, pp. 420-421, 2002.
  13. I. Hotovy, J. Huran, L. Spiess, J. Liday, H. Sitter and S. Hascyk, Vacuum, vol. 69, pp. 237, 2003.
  14. H. L. Chen and Y. S. Yang, Thin Solid Films, Vol. 516, pp. 5590, 2008. https://doi.org/10.1016/j.tsf.2007.07.035
  15. W. L. Jang, Y. M. Lu, W. S. Hwang, T. L. Hsiung and H. P. Wang, Surf. Coat. Technol., Vol. 202, pp. 5444, 2008. https://doi.org/10.1016/j.surfcoat.2008.06.025
  16. B. Abbey, J. D. Lipp, Z. H. Barber and T. Rayment, J. Appl. Phys., Vol. 99, pp. 124914, 2006. https://doi.org/10.1063/1.2205556
  17. H. L. Chen, Y. M. Lu and W. S. Hwang, Mater. Trans., JIM 46, pp. 872, 2005. https://doi.org/10.2320/matertrans.46.872
  18. W. Brucker, R. Kaltofen, J. Thomas, M. Hecker, M. Uhlemann, S. Oswald, D. Elefant and C. M. Schneider, J. Appl. Phys. Vol. 94, pp. 4853, 2003. https://doi.org/10.1063/1.1609052
  19. K. J. Patel, M. S. Desai, C. J. Panchal and B. Rehani, J. Nano. Electron. Phys., Vol. 3, pp. 376. 2011.
  20. T. Y. Kuo, S. C. Chen, W. C. Peng, Y. C. Lin and H. C. Lin, Thin Solid Films, Vol. 519, pp. 4940, 2011. https://doi.org/10.1016/j.tsf.2011.01.057
  21. H. L. Chen, Y. M. Lu, J. Y. Wu and W. S. Hwang, Mater. Trans., JIM 46, pp. 2530, 2005. https://doi.org/10.2320/matertrans.46.2530
  22. Y. S. Jung and S. S. Lee, J. Crystal Growth Vol. 259, pp 343, 2003. https://doi.org/10.1016/j.jcrysgro.2003.07.006
  23. S. Nandy, B. Saha, M. K. Mitra, K. K. Chattopadhyay, J. Mater. Sci., Vol. 42, pp. 5766, 2007. https://doi.org/10.1007/s10853-006-1153-x
  24. S. C. Chen, T. Y. Kuo, T. H. Sun, Surface & Coatings Technology, Vol. 205, pp. S236, 2010. https://doi.org/10.1016/j.surfcoat.2010.07.082
  25. I. Dhanya and B Savi, "A study on the thermodynamics of gran growth in R.F magnetron sputtered NiO thin films," J. Coatings, Vol. 2013, pp. 1-6, 2013.