References
- Adamo, S. A. (2008) Bidirectional connections between the immune system and the nervous system in insects, In Insect immunology; Beckage, N. E., Eds.; Academic Press, New York, pp. 129-149.
- Akhurst, R. J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121:303-309.
- Beckage, N. E. (2008) Insect immunology. 348 pp. Academic Press, New York.
- BenFarhat, D., M. Danmark, S. B. Khedher, S. Mahfoudh, S. Kammoun, and S. Tounsi (2013) Response of larval Ephestia kueniella (Lepidoptera: Pyralida) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. J. Invertebr. Pathol. 114:71-75. https://doi.org/10.1016/j.jip.2013.05.009
- Bravo, A., S. S. Gill and M. Soberon (2005) Bacillus thuringiensis mechanisms and use, In Comprehensive molecular insect science; Gilbert, L. I., K. Iatrou and S. S. Gill, Eds.; Elsevier; New York, pp. 175-206.
- Bravo, A., I. Gomez, H. Porta, B. I. Garcia-Gomez, C. Rodriguez-Almazan, L. Pardo and M. Soberon (2012) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. 6:17-26.
- Bravo, A., S. Likitvivatanavong, S. S. Gill and M. Soberon (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41:423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
- Broderick, N. A., K. F. Raffa and J. Handelsman (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103:15196-15199. https://doi.org/10.1073/pnas.0604865103
- Broderick, N. A., K. F. Raffa and J. Handelsman (2010) Chemical modulators of the innate immune response alter gypsi moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10:129. https://doi.org/10.1186/1471-2180-10-129
- Brownbridge, M. and J. Margalit (1986) New Bacillus thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J. Invertebr. Pathol. 48:216-222. https://doi.org/10.1016/0022-2011(86)90126-6
- Contreras, E., C. Rausell and M. D. Real (2013) Tribolium castaneum apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J. Invertebr. Pathol. 113:209-213. https://doi.org/10.1016/j.jip.2013.04.002
- Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie and D. Lereclus (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:807-813.
- Crickmore, N., J. Baum, A. Bravo, D. Lereclus, K. Narva, K, Sampson, E. Schnepf, M. Sun and D. R. Zeigler (2014) 'Bacillus thuringiensis toxin nomenclature'. http://www.btnomenclature.info.
- de Maagd, R. A., A. Bravo and N. Crickmore (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
- Dong, F., R. Shi, S. Zhang, T. Zhan, G. Wu, J. Shen and Z. Liu (2012) Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Appl. Microbiol. Biotechnol. 96: 921-929. https://doi.org/10.1007/s00253-012-4213-y
- Eom, S., Y. Park and Y. Kim (2014) Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 52:161-168. https://doi.org/10.1007/s12275-014-3251-9
- Gillespie, J. P., M. R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643. https://doi.org/10.1146/annurev.ento.42.1.611
- Gho, H. K., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1991) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hbner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29:180-183.
- Grizanova, E. V., I. M. Dubovskiy, M. M. A. Whitten and V. V. Glupov (2014) Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119:40-46. https://doi.org/10.1016/j.jip.2014.04.003
- Hwang, J., Y. Park and Y. Kim (2013) An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and IMD pathways by blocking eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83:151-169. https://doi.org/10.1002/arch.21103
- Jung, S. and Y. Kim (2006) Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35:1584-1589. https://doi.org/10.1093/ee/35.6.1584
- Kaya, H. K. and R. Gaugler (1993) Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
- Kim, K., H. Kim, Y. Park, K. H. Kim and Y. Kim (2013) An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 52:35-43. https://doi.org/10.5656/KSAE.2013.01.1.080
- Kim, Y., D. Ji, S. Cho and Y. Park (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Physiol. 89:258-264. https://doi.org/10.1016/j.jip.2005.05.001
- Kirkpatrick, B. A., J. O. Washburn and L. E. Volkman (1998) AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens, J, Invertebr. Pathol. 72:63-72. https://doi.org/10.1006/jipa.1997.4752
- Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42:72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
- Park, H. W., D. K. Bideshi and B. A. Federici (2005) Synthesis of additional endotoxins in Bacillus thuringiensis subsp. morrisoni PG-14 and Bacillus thuringiensis subsp. jegathesan significantly improves their mosquitocidal efficacy. J. Med. Entomol. 42:337-341. https://doi.org/10.1093/jmedent/42.3.337
- Park, J. W. and B. L. Lee (2012) Insect immunology, In Insect molecular biology and biochemistry; Gilbert, L. I., Ed.; Academic Press, New York, pp. 480-512.
- Park, Y. and Y. Kim (2003) Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54:143-142.
- Park, Y., Y. Kim and D. Stanley (2004a) The bacterium Xenorhabdus nematophila inhibits phospholipase A2 from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91:371-373.
- Park, Y., Y. Kim, H. Tunaz and D. W. Stanley (2004b) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86:65-71. https://doi.org/10.1016/j.jip.2004.05.002
- Rahman, M. M., H. L. S. Roberts, M. Sarjan, S. Asgari and O. Schmidt (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101:2696-2699. https://doi.org/10.1073/pnas.0306669101
- Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin and Y. H. Je (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17:547-559.
- SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
-
Seo, S., S. Lee, Y. Hong and Y. Kim (2012) Phospholipase
$A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Entomol. 78:3816-3823. https://doi.org/10.1128/AEM.00301-12 -
Shrestha, S. and Y. Kim (2009) Biochemical characteristics of immune-associated phospholipase
$A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47:774-782. https://doi.org/10.1007/s12275-009-0145-3 - Singh, G., P. J. Rup and O. Koul (2007) Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bull. Entomol. Res. 97:351-357. https://doi.org/10.1017/S0007485307005019
- Stanley, D. and Y. Kim (2014) Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33:20-63. https://doi.org/10.1080/07352689.2014.847631
- Vojtech, E., M. Meissle and G. M. Poppy (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res. 14:133-144. https://doi.org/10.1007/s11248-005-2736-z
- Washburn, J. O., B. A. Kirkpatrick and L. E. Volkman (1995) Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209:561-568. https://doi.org/10.1006/viro.1995.1288
- Washburn, J. O., J. F. Wong and L. E. Volkman (2001) Comparative pathogenesis of Helicoverpa zea S nucleopolyhedrovirus in noctuid larvae. J. Gen. Virol. 82:1777-1784. https://doi.org/10.1099/0022-1317-82-7-1777
- Wirth, M. C., Y. Yang, W. E. Walton, B. A. Federici and C. Berry (2007) Mtx toxins synergize Bacillus spaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl. Environ. Microbiol. 73: 6066-6071. https://doi.org/10.1128/AEM.00654-07
- Zhang, X., M. Candas, N. B. Griko, R. Taussig and L. A. Bulla, Jr. (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103:9897-9902. https://doi.org/10.1073/pnas.0604017103