DOI QR코드

DOI QR Code

Extrapolating B-H Curve Data using Common Electrical Steel Characteristics for High Magnetic Saturation Applications

  • Chai, Seung-Hee (Department of Automotive Engineering, Hanyang University) ;
  • Kim, Ji-Hyun (Department of Automotive Engineering, Hanyang University) ;
  • Kim, Sung-Il (Motor R&D Group, Digital Appliances, Samsung Electronics) ;
  • Hong, Jung-Pyo (Department of Automotive Engineering, Hanyang University)
  • Received : 2015.06.01
  • Accepted : 2015.07.07
  • Published : 2015.09.30

Abstract

In this paper, an adequate B-H curve extrapolation method is proposed and its reliability is verified through experiments. A method is developed to estimate the magnetic saturation induction from the density of the lamination core and electrical resistivity. The magnetic saturation induction of electrical steels measured using a vibration sample magnetometer are compared with the analytical results to validate the accuracy of the proposed estimation method. It is found that the predicted error in the magnetic saturation induction of the electrical steels are approximately 1.2% when the proposed method is used. The performance of interior permanent magnet synchronous motors that applies the proposed method are evaluated via 2D nonlinear finite element analysis and through experiments. Based on the obtained results, the extrapolated B-H curves from the estimated saturation induction can be used for various analyses in saturation region.

Keywords

References

  1. K. I. Laskaris and A. G. Kladas, IEEE Trans. Ind. Electron. 57, 138 (2010). https://doi.org/10.1109/TIE.2009.2033086
  2. K. T. Chau, C. C. Chan, and Liu Chunhua, IEEE Trans. Ind. Electron. 55, 2246 (2008).
  3. K. C. Kim, C. S. Jin, and J. Lee, IEEE Trans. Magn. 45, 2835 (2009). https://doi.org/10.1109/TMAG.2009.2018684
  4. Y. Kano, T. Kosaka, N. Matsui, and M. Fujitsuna, Int. Conf. Electrical Machines 2709 (2012).
  5. K. Fujiwara, T. Adachi, and N. Takahashi, IEEE Trans. Magn. 38, 889 (2002). https://doi.org/10.1109/20.996229
  6. T. Takeuchi, 'Electric machine design' (Ohmsha, Ltd., 1979).
  7. US 7887645 B1
  8. J. Barros Lorenzo, T. Ros-Yanez, M. De Wulf, and Y. Houbaert, IEEE Trans. Magn. 40, 2739 (2004). https://doi.org/10.1109/TMAG.2004.829017
  9. K. Ikeda and H. Dohmeki, IEEE International Conference on Electrical Machines (ICEM), 784 (2012).
  10. T. Yonamine and F. J. G. Landgraf, J. Magn. Magn. Mater. 272-276, e565 (2004). https://doi.org/10.1016/j.jmmm.2003.12.1220
  11. R. C. Hall, J. Appl. Phys. 31, 1037 (1960). https://doi.org/10.1063/1.1735741
  12. R. M. Bozorth and D. Ferromagnetism, Van Nostrand Company, Inc., Princeton, NJ (1955).
  13. D. C. Hanselman and W. H. Peake, IEE Proc. Electr. Power Appl. 142, 131 (1995). https://doi.org/10.1049/ip-epa:19951700
  14. B. H. Lee, S. O. Kwon, T. Sun, J. P. Hong, G. H. Lee, and J. Hur, IEEE Trans. Magn. 47, 1066 (2011). https://doi.org/10.1109/TMAG.2010.2099647
  15. G. H. Kang, J. P. Hong, G. T. Kim, and J. W. Park, IEEE Trans. Magn. 36, 1867 (2000). https://doi.org/10.1109/20.877809
  16. M. S. Lim, S. H. Chai, and J. P. Hong, IET Electric Power Applications 8, 349 (2014). https://doi.org/10.1049/iet-epa.2014.0005
  17. B. H. Lee, S. O. Kwon, T. Sun, J. P. Hong, G. H. Lee, and J. Hur, IEEE Trans. Magn. 47, 1066 (2011). https://doi.org/10.1109/TMAG.2010.2099647
  18. A. E. Umenei, Y. Melikhov, and D. C. Jiles, IEEE Trans. Magn. 47, 4706 (2011).
  19. R. M. Bozorth, Ferromagnetism, New York, IEEE Press, (1993) p. 476.
  20. M. Jesenik, A. Hamler, P. Kitak, and M. Trlep, Compumag 2013, Budapest (2013).