DOI QR코드

DOI QR Code

Concentrations and Characteristics of Carbonaceous Compounds in PM10 over Seoul: Measurement between 2006 and 2007

서울시 대기 중 미세먼지 내 탄소성 입자의 농도 및 특성 : 2006~2007년 측정결과

  • Choi, Na Rae (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Ji Yi (Department of Renewable Energy Convergence, Chosun University) ;
  • Jung, Chang Hoon (Department Health Management, Kyungin Women's College) ;
  • Lee, Sun Yong (Department of Environmental Health, Seoul National University) ;
  • Yi, Seung Muk (Department of Environmental Health, Seoul National University) ;
  • Kim, Yong Pyo (Department of Environmental Science and Engineering, Ewha Womans University)
  • 최나래 (이화여자대학교 환경공학과) ;
  • 이지이 (조선대학교 환경공학과) ;
  • 정창훈 (경인여자대학교 보건의료관리과) ;
  • 이선영 (서울대학교 환경보건학과) ;
  • 이승묵 (서울대학교 환경보건학과) ;
  • 김용표 (이화여자대학교 환경공학과)
  • Received : 2015.06.19
  • Accepted : 2015.08.05
  • Published : 2015.08.31

Abstract

Carbonaceous compounds in the atmospheric particulate matter with an aerodynamic diameter of less than or equal to a nominal $10{\mu}m$ ($PM_{10}$) were analyzed for the samples collected during the period of August 2006 to August 2007 at Jongro in Seoul. A total 18 dicarboxylic acids (DCAs) and levoglucosan, as well as organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC), were analyzed. Distinctive seasonal patterns of the concentrations of OC, EC, and WSOC including levoglucosan were observed with the highest concentrations in winter and the lowest concentrations in summer. In addition, OC, WSOC, and most of DCAs showed also higher concentration in summer than in winter. Using the seasonal patterns and relevant indicative ratios (WSOC/EC and $OC_{sec}/OC_{tot}$) of the carbonaceous compounds, it was verified that (1) primary emission sources were elevated in winter, and (2) the formation of secondary OC increased due to the prompted photochemical reaction in summer. Results from this study also suggest that some organic compounds were likely attributed to longrange transport.

Keywords

References

  1. Ackerman, A.S., M.P. Kirkpatrick, D.E. Stevens, and O.B. Toon (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014-1017. https://doi.org/10.1038/nature03174
  2. Agawal, S., S.G. Aggarwal, K. Okuzawa, and K. Kawamura (2010) Size distributions of dicarboxylic acids, ketoacids, ${\alpha}$-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols, Atmos. Chem. Phys., 10, 5839-5858. https://doi.org/10.5194/acp-10-5839-2010
  3. Bi, X., B.R.T. Simoneit, G. Sheng, S. Ma, and J. Fu (2008) Composition and major sources of organic compounds in urban aerosols, Atmos. Res., 88, 256-265. https://doi.org/10.1016/j.atmosres.2007.11.017
  4. Choi, J.K., J.B. Heo, S.J. Ban, S.M. Yi, and Z.D. Zoh (2012) Chemical characteristics of $PM_{2.5}$ aerosol in Incheon, Korea, Atmos. Environ., 60, 583-592. https://doi.org/10.1016/j.atmosenv.2012.06.078
  5. Han, J.H., B. Bhang, M. Lee, S.C. Yoon, S.W. Kim, L. Chang, and K.S. Kang (2013) Semi-continuous measurements of $PM_{2.5}$ OC and EC at Gosan: Seasonal variations and characteristics of high-concentration episodes, J. Korean Soc. Atmos. Environ., 29, 237-250. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.3.237
  6. Han, S.H. and Y.P. Kim (2015) Long-term Trends of the Concentrations of Mass and Chemical Composition in $PM_{2.5}$ over Seoul, J. Korean Soc. Atmos. Environ., 31, 143-156. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2015.31.2.143
  7. Heo, J.B., P.K. Hopke, and S.M. Yi (2009) Source apportionment of $PM_{2.5}$ in Seoul, Korea, Atmos. Chem. Phys., 9, 4957-4971. https://doi.org/10.5194/acp-9-4957-2009
  8. Ho, K.F., S.C. Lee, J.J. Cao, K. Kawamura, T. Watanabe, Y. Cheng, and J.C. Chow (2006) Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong, Atmos. Environ., 40, 3030-3040. https://doi.org/10.1016/j.atmosenv.2005.11.069
  9. Hong, S.Y., J.J. Lee, J.Y. Lee, and Y.P. Kim (2008) Comparison of the fine particle concentrations in Seoul and other foreign mega-cities, Par. Aerosol. Res., 4, 1-7. (in Korean with English abstract)
  10. Jung, J., S. Lee, H. Kim, D. Kim, H. Lee, and S. Oh (2014) Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice harvest period, Atmos. Environ., 89, 642-650. https://doi.org/10.1016/j.atmosenv.2014.03.010
  11. Kawamura, K. and O. Yasui (2005) Diurnal changes in the distribution of dicarboxylic acids, ketocarboxycli acids abd dicarbonyls in the urban Tokyo atmosphere, Atmos. Environ., 39, 1945-1960. https://doi.org/10.1016/j.atmosenv.2004.12.014
  12. Kawamura, K., H. Kasukabe, and L.A. Barrie (1996) Source and reaction pathways of dicarboxycli acid, ketoacids and dicarbonyls in arctic aerosols: one year of observations, Atmos. Environ., 30, 1709-1722. https://doi.org/10.1016/1352-2310(95)00395-9
  13. Kim, H., J. Jung, J. Lee, and S. Lee (2015) Seasonal characteristics of organic carbon and elemental carbon in $PM_{2.5}$ in Daejeon, J. Korean Soc. Atmos. Environ., 31, 28-70. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2015.31.1.028
  14. Kim, H.S., J.B. Huh, P.K. Hopke, T.M. Holsen, and S.M. Yi (2007) Characteristics of the major chemical constituents of $PM_{2.5}$ and somg events in Seoul, Korea in 2003 and 2004, Atmos. Environ., 41, 6762-6770. https://doi.org/10.1016/j.atmosenv.2007.04.060
  15. Kim, Y.P. (2006) Air pollution in Seoul caused by aerosols, J. Korean Soc. Atmos. Environ., 22, 535-553. (in Korean with English abstract)
  16. Kim, Y.P. and M.J. Yeo (2013) The trend of the concentrations of the criteria pollutants over Seoul, J. Korean Soc. Atmos. Environ., 29, 369-377. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.4.369
  17. Kim, Y.P., K.C. Moon, J.H. Lee, and M.J. Baik (1999) Concentrations of carbonaceous species in particles at Seoul and Cheju in Korea, Atmos. Environ., 33, 2751-2758. https://doi.org/10.1016/S1352-2310(98)00313-6
  18. KMA (Korean Meteorological Administration) (2011) Available at http://www.kma.go.kr/weather/climate/past_cal.jsp (accessed 2015/04/20).
  19. KOSIS (Korea Statistical Information Service), 2013. Available at http://www.kosis.kr/ (accessed Apr. 20, 2015).
  20. Lee, J.Y., S.B. Lee, J.Y. Kim, H.C. Jin, H.B. Lim, and G.N. Bae (2014) Characteristics of gas- and particlephase polycyclic aromatic hydrocarbon (PAH) distribution in tunnels, J. Korean Soc. Atmos. Environ., 6, 519-530. (in Korean with English abstract)
  21. MOGAHA (Korean Ministry of Government Administration and Home Affairs) (2013) Statistics city yearbook of Korea, 11-131100-000303-10. (in Korean with English abstract)
  22. Park, S.S. and S.Y. Cho (2011) Tracking sources and behavior of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45, 60-72. https://doi.org/10.1016/j.atmosenv.2010.09.045
  23. Park, S.S., M.S. Bae, J.J. Schauer, Y.J. Kim, S.Y. Cho, and S.J. Kim (2006) Molecular composition of $PM_{2.5}$ organic aerosol measured at an urban site of Korea during the ACE-Asia campaign, Atmos. Environ., 40, 4182-4198. https://doi.org/10.1016/j.atmosenv.2006.02.012
  24. Pathak, R.K., T. Wang, K.F. Ho, and S.C. Lee (2011) Characteristics of summertime $PM_{2.5}$ organic and elemental carbon in four major Chinese cities: Implications of high acidity of water-soluble organic carbon (WSOC), Atmos. Environ., 45, 348.325.
  25. Rogge, W.F., M.A. Mazurek, L.M. Hildemann, G.R. Cass, and B.R.T. Simoneit (1993) Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation, Atmos. Environ., 27, 1309-1330. https://doi.org/10.1016/0960-1686(93)90257-Y
  26. SI (The Seoul Institute) (2010) Indicator in this transition, Seoul, Available at https://www.si.re.kr/indicator (accessed 2015/04/12).
  27. Stone, E.A., S.C. Yoon, and J.J. Schauer (2011) Chemical characterization of fine and coarse particles in Gosan, Korea during springtime dust events, Aerosol. Air. Qual. Res., 11, 31-43.
  28. Turpin, B.J. and J.J. Huntxicker (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS, Atmos. Environ., 29, 3527-3544. https://doi.org/10.1016/1352-2310(94)00276-Q
  29. Yang, H., J. Xu, W.S. Wu, C.H. Wan, and J.Z. Yu (2004) Chemical characterization of water-soluble organic aerosols at Jeju Island collected during ACE-Asia, Environ. Chem., 13-17.
  30. Yang, L., M.B. Ray, and L.E. Yu (2008) Photooxidation of dicarboxylic acids-Part 2: Kinetics, intermediates and field observations, Atmos. Environ., 42, 868-880. https://doi.org/10.1016/j.atmosenv.2007.10.030
  31. Zhang, T., J.J. Cao, J.C. Chow, Z.X. Shen, K.F. Ho, S.S.H. Ho, S.X. Liu, Y.M. Han, J.G. Watson, G.H. Wang, and R.J. Huang (2014) Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi'an, China, J. Air. Waste. Manag. Assoc., 64, 1317-1327. https://doi.org/10.1080/10962247.2014.944959
  32. Zhang, T., M. Claeys, H. Cachier, S. Dong, W. Wang, W. Maenhaut, and X. Liu (2008) Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker, Atmos. Environ., 42, 7013-7021. https://doi.org/10.1016/j.atmosenv.2008.04.050
  33. Zhang, Y.Y., L. Mueller, R. Winterhalter, G.K. Moortgat, T. Hoffmann, and U. Poeschl (2010) Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter, Atmos. Chem. and Phys., 10, 7859-7873. https://doi.org/10.5194/acp-10-7859-2010
  34. Zhao, X., X. Wang, X. Ding, Q. He, Z. Zhang, T. Liu, X. Fu, B. Gao, Y. Wang, Y. Zhang, X. Deng, and D. Wu (2014) Compositions and sources of organic acids in fine particles ($PM_{2.5}$) over the Pearl River Delta region, south China, J. Environ. Sci., 26, 110-121. https://doi.org/10.1016/S1001-0742(13)60386-1

Cited by

  1. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data vol.121, pp.22, 2016, https://doi.org/10.1002/2016JD025080
  2. Spacial Distribution of PM1.0 Major Compounds from Long Range Transport at the Baegryungdo Super Site: Relationship between PSCF and Cluster Analysis vol.33, pp.4, 2017, https://doi.org/10.5572/KOSAE.2017.33.4.411
  3. Source Apportionment of PM10 at Pyeongtaek Area Using Positive Matrix Factorization (PMF) Model vol.34, pp.6, 2018, https://doi.org/10.5572/KOSAE.2018.34.6.849