DOI QR코드

DOI QR Code

A Study on the Development of a Low-cost Device for Measuring the Optical Smoke Density

광학적 연기밀도 측정을 위한 저가형 장치의 개발에 관한 연구

  • Kim, Bong-Jun (Department of Fire and Disaster Prevention, Daejeon University) ;
  • Cho, Jae-Ho (Department of Fire and Disaster Prevention, Daejeon University) ;
  • Hwang, Cheol-Hong (Department of Fire and Disaster Prevention, Daejeon University) ;
  • Park, Seul-Hyun (Department of Mechanical System Engineering, Chosun University)
  • 김봉준 (대전대학교 소방방재학과) ;
  • 조재호 (대전대학교 소방방재학과) ;
  • 황철홍 (대전대학교 소방방재학과) ;
  • 박설현 (조선대학교 기계시스템공학과)
  • Received : 2015.08.08
  • Accepted : 2015.08.26
  • Published : 2015.08.31

Abstract

A low-cost device using the light-extinction method was developed to measure the optical smoke density in various fire experiments in the present study. The relative measurement accuracy of low-cost device was evaluated through the comparison of optical density measured by a high-cost standard device consisting of He-Ne laser, photo detector and various optical components. The low-cost device was composed of laser module, photocell and acrylic board. From the experiments using a smoke generator can be easily adjusted the smoke concentration, it was found that the low-cost device could measure the smoke density within the range of ${\pm}10%$, compared to the standard device. In addition, the reliability of low-cost device was also confirmed in the experiment using a polyethylene flame. Finally, it is expected that the low-cost device developed with real-time measurement and simple installation for measuring the smoke density will be used instead of the high-cost standard device.

본 연구에서는 다양한 화재실험에서 광학 연기밀도 측정을 위하여 광소멸법을 이용한 저가형 장치가 개발되었다. 저가형 장치의 상대적 측정 정확도는 He-Ne 레이저, 포토디텍터 및 다양한 광학부품을 이용한 고가의 표준장치에 의해 측정된 연기밀도의 비교를 통해 평가되었다. 저가형 장치는 레이저 모듈, 포토셀 그리고 아크릴 보드로 구성되었다. 연기농도의 조절이 용이한 연기 발생장치 실험을 통해, 저가형 장치는 표준장치에 비해 ${\pm}10%$의 범위 내에서 연기밀도를 측정할 수 있음을 확인하였다. 저가 장치의 신뢰성은 또한 폴리에틸렌 화염을 이용한 실험에서도 확인되었다. 결론적으로 개발된 저가형 장치는 연기밀도 측정을 위한 간편한 설치 및 실시간 측정과 함께 고가의 표준장치를 대신하여 사용될 것으로 기대된다.

Keywords

References

  1. J. H. McGuire and G. T. Tamura, "Simple Analysis of Smoke Flow Problems in High Rise Buildings", Fire Technology, Vol. 11, pp. 15-22 (1975). https://doi.org/10.1007/BF02589997
  2. R. Custer, "Selection and Specification of the 'Design Fire' for Performance-Based Fire Protection Design", in Proceedings, SFPE Engineering Seminar, Phoenix, AZ, Society of Fire Protection Engineers, Boston (1993).
  3. J. H. Cho, S. Y. Mun, C. H. Hwang and D. G. Nam, "Measurement of the Device Properties of Photoelectric Smoke Detector for th Fire Modeling", Journal of Korean Institute of Fire Science and Engineering, Vol. 28, No. 6, pp. 62-68 (2014).
  4. E. Ronchi and D. Nilsson, "Fire Evacuation in High-Rise Buildings: A Review of Human Beheavior and Modelling Research, Vol. 2, No. 7 pp. 1-21 (2013). https://doi.org/10.1186/2193-0414-2-1
  5. A. Tewarson, "Generation of Heat and Chemical Compounds in Fires", SFPE Handbook of Fire Protecting Engineering, Social Fire Protection Engineers (1995).
  6. A. Lock, M. Bundy, E. L. Johnsson, A. Hamins, G. H. Ko, C. H. Hwang, P. Fuss and R. Harris, "Experimental Study of the Effects of Fuel Type, Fuel Distribution, and Vent Size on Full-Scale Underventilated Compartment Fires in an ISO 9705 Room, NIST Technical Note 1603, NIST, Gaithersburg, MD (2008).
  7. M. Y. Chio, G. W. Mulholland, A. Hamins and T. Kashiwagi, "Comparison of the Soot Volume Fraction Using Gravimetric and Light Extinction Techniques", Combustion and Flame, Vol. 102, pp. 161-169 (1995). https://doi.org/10.1016/0010-2180(94)00282-W
  8. G. W. Mulholand, E. L. Johnsson, M. G. Fernandez and D. A. Shear, "Design and Testing of a New Smoke Concentration Meter", Fire and Materials, Vol. 24, No. 5, pp. 231-243 (2000). https://doi.org/10.1002/1099-1018(200009/10)24:5<231::AID-FAM743>3.0.CO;2-N
  9. G. W. Mulholand and C. Croakin, "Specific Extinction Coefficient Flame Generated Smoke", Fire and Materials, Vol. 24, No. 5, pp. 227-230 (2000). https://doi.org/10.1002/1099-1018(200009/10)24:5<227::AID-FAM742>3.0.CO;2-9
  10. W. P. Chien and J. D. Seader, "Prediction of Specific Optical Density for Smoke Obscuration in an NBS Smoke Density Chamber", Fire Technology, Vol. 11, No. 3, pp. 206-218 (1975). https://doi.org/10.1007/BF02589965
  11. L. Y. Cooper, "Some Factors Affecting the Design of a Calorimeter Hood and Exhaust", Journal of Fire Protection Engineering, Vol. 6, No. 3, pp. 99-112 (1994). https://doi.org/10.1177/104239159400600301
  12. C. Rexfort, "A Contribution to Fire Detection Modelling and Simulation", Fire Safety Science - Proceedings of the Eighth International Symposium, pp. 1512-1531 (2005).
  13. S. C. Kim, "Uncertainty Analysis of the Optical Smoke Density Measurement through the Door-way in Compartment Fire", Journal of Korean Institute of Fire Science and Engineering, Vol. 27, No. 2, pp. 75-79 (2013).
  14. A. D. Putorti, "Design Parameters for Stack-mounted Light Extinction Measurement Devices", NISTIR 6215, NIST, Gaitherburg, MD (1999).
  15. G. P. Crampton and G. D. Lougheed, "Comparison of Smoke Measurements with Standard and Non-standard System", NRC-CNRC Research Report #183, Canada (2004).
  16. K. H. Kim and C. H. Hwang, "Measurement of the Device Properties of Ionization Smoke Detector to Improve Predictive Performance of the Fire Modeling", Journal of Korean Institute of Fire Science and Engineering, Vol. 27, No. 4, pp. 27-34 (2013).

Cited by

  1. An Experimental Study on the Effects of the Shape of a Drencher Head on the Characteristics of a Water Curtain vol.30, pp.3, 2016, https://doi.org/10.7731/KIFSE.2016.30.3.086