DOI QR코드

DOI QR Code

Pattern of Shear-induced Fracture Development in en Echelon Array : Discrete-element Approach

전단변형 시 안행상 균열의 끝에서 형성되는 새로운 균열 발달 형태 연구 : 개별요소적 접근

  • 권순달 ((주)희송지오텍 자원환경사업부) ;
  • 유승완 (대우인터내셔널 석유가스탐사실) ;
  • 권상훈 (연세대학교 지구시스템과학과) ;
  • 김기석 ((주)희송지오텍)
  • Received : 2015.06.23
  • Accepted : 2015.07.27
  • Published : 2015.08.31

Abstract

Rock masses include various rock discontinuities such as faults, joints, and bedding planes. These discontinuities appear as complex structures in geometry. In this study, growth patterns of fractures between two stepping shear fracture tips are numerically modeled using PFC2D (Particle Flow Code). The numerical model showed not only incipient growth of fractures at the tips of preexisting fractures but also subsequent growth of the new fractures. It is observed from all of the experiments that the incipient fractures are tensile cracks developed at $30{\sim}57^{\circ}$ to the preexisting fractures and the subsequent growth of these fractures were at low angles to the preexisting fractures this study.

암반에는 단층, 절리, 층리 등의 불연속면이 많이 포함되어 있다. 이러한 불연속면은 기하학적 복합성에 의해 복잡한 구조로 나타난다. 이 연구는 스텝으로 배열된 두 전단균열의 끝에서 나타나는 구조 발달을 수치해석적으로 연구하였다. 이 연구에서는 PFC2D(Particle Flow Code) 프로그램을 이용하여 두 전단균열의 끝에서 형성되는 초기균열(incipient fracture)뿐만 아니라 초기균열에서 덧자라는 균열의 성장과정을 살펴보았으며, 균열 발생 시 나타나는 주변응력상태를 관찰하였다. 모든 실험 결과에서는 균열 끝에서 발생한 초기 균열 대부분이 인장균열에 의한 것으로 나타났으며, 균열의 전파각은 초기에 $30{\sim}57^{\circ}$에서 실험이 더 진행되면 저각으로 발달하는 것으로 나타났다.

Keywords

References

  1. 박의섭, 류창하, 2005, PFC2D를 이용한 절리암반의 역학적 물성평가 연구, 터널과 지하공간 15.2, 119-128.
  2. 이부경, 1998, 암석역학의 원리, 대윤, 158.
  3. 이상진, 2007, 개별요소법의 기본개념과 이용에 대한 소고, 한국공간구조학회지, 7, 5, 5-9.
  4. 이인모, 2000, 암석역학의 원리, 새론, 108.
  5. 이희근, 양형식, 2002, 암석역학 -이론과 해석-, 서울대학교출판부, 129-148.
  6. 정용훈, 이정인, 2006, PFC2D를 활용을 위한 정량적 미수변수 결정법, 터널과 지하공간 16.4, 334-346.
  7. Barton, N., 1976, The Shear Strength of Rock and Rock Joints, Int. J. Rock Mech. Min. Sci., 13, 255-279. https://doi.org/10.1016/0148-9062(76)90003-6
  8. Cotterell, B. and Rice, J.R., 1980, Slightly curved of kinked cracks, International Journal Fracture, 16, 155-169. https://doi.org/10.1007/BF00012619
  9. Cruikshank, K.M., Zhao, G. and Johnson, A.M., 1991, Analysis of minor fractures associated with joints and faulted joints, Journal of Structural Geology, 13, 865-886. https://doi.org/10.1016/0191-8141(91)90083-U
  10. Downey, M.W., 1984, Evaluating seals for hydrocarbon accumulations, AAPG Bull., 68, 1752-1763.
  11. Du, Y. and A. Aydin, 1993, The maximum distortional strain energy criterion for sheat fracture propagation with applications to the growth paths of en echelon faults, Geophysical Research Letters, 20, 1091-1094. https://doi.org/10.1029/93GL01238
  12. Du, Y. and A. Aydin, 1995, Shear fracture patterns and connectivity at geometric complexities along strike-slip faults, Journal of Geophysical Research, 100, 18, 093-18, 102.
  13. Ghazvinian, A., Sarfarazi, V., Nejati, H. and Hadei, M.R., 2011, Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints, 2011 한국암반 공학회 추계 총회 및 창립 30주년 기념 심포지엄, 3-21.
  14. Harris, R.A., Archuleta, R.J. and Day, S.M., 1991, Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture, Geophys. Fes. Lett., 18, 893-896. https://doi.org/10.1029/91GL01061
  15. Henderson, L.H., 1939, Detailed geological mapping and fault studies of the San Jacinto runnel line and vicinity, J. Geol., 47, 314-324. https://doi.org/10.1086/624780
  16. Islam, Md. A. and Skalle. P., 2013, An Experimental Investigation of Shale Mechanical Properties Through Drained and Undrained Test Mechaninsms, Rock Mech Rock Eng, 46, 1391-1413. https://doi.org/10.1007/s00603-013-0377-8
  17. Itasca Consulting Group, Inc., 1984, Universal distinct element code, www.itascag.com.
  18. Itasca Consulting Group, Inc., 1994, Particle flow code 2D, www.itascag.com.
  19. Itasca Consulting Group, Inc., 2004, Particle Flow Code in 2dimensions, Ver 3.1, User's manual, Minneapolis, Itasca.
  20. Kim, Y.-S., Andrews, J.R. and Sanderson, D.J., 2000, Damage zones around strike-slip fault systems and strike-slip fault evolution, Crakington Haven, southwest England. Geoscience Journal, 4, 53-72. https://doi.org/10.1007/BF02910127
  21. Knott, S.D., 1993, Fault seal analysis in the North Sea, AAPG Bull., 77, 778-792.
  22. Liu, H.Y., Kou, S.Q., Lindqvist, P.-A. and Tang, C.A., 2004, Numerical Simulation of Shear Fracture (mode II) in Heterogeneous Brittle Rock, Int J Rock Mech Min Sci, 41, No.3.
  23. Olson, J. and Pollard, D.D., 1989, Inferring paleostresses from natural fracture patterns: A new method, Geology, 17, 345-348. https://doi.org/10.1130/0091-7613(1989)017<0345:IPFNFP>2.3.CO;2
  24. Patton, F.D., 1966, Multiple Modes of Shear Failures in Rock, Proc., 1st Int. Cong. Rock Mech., 1, 509-513.
  25. Petit, J.-P., 1988, Can natural fractures popagate under mode II condition?. Tectonics, 7, 1243-1256. https://doi.org/10.1029/TC007i006p01243
  26. Pollard, D.D. and Aydin, A., 1988, Progress in understanding jointing over the past century. Geological Society of America Bulletin, 100, 1181-1204. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
  27. Pollard, D.D., Segall, P. and Delaney, P.T., 1982, Formation and interpretation of dilatant echelon cracks. Geological Society of America Bulletin, 93, 1291-1303. https://doi.org/10.1130/0016-7606(1982)93<1291:FAIODE>2.0.CO;2
  28. Ramsay, J.G., 1967, Folding and Fracturing of rocks. McGraw-Hill. New York, 568.
  29. Rao, Q.H., Sun. Z.Q., Stephansson, O., Li, C.L., Stillborg, B., 2003, Shear fracture (mode II) of brittle rock, Int J Rock Mech Min Sci, 40, 355-375. https://doi.org/10.1016/S1365-1609(03)00003-0
  30. Reches, Z. and Lockner, D.A., 1994, Nucleation and growth of faults in brittle rocks. Journal of Geophysical Research, 99, 18159-18174. https://doi.org/10.1029/94JB00115
  31. Simmons, S.F. and Graham, I., 2003, Volcanic, Geothermal, Ore-forming Fluids: Rulers and Witnesses of Processes within the Earth. Econ. Geol. Special Pub., 10, 343.
  32. Zhang, Z. and Ge, X., 2007, Numerical simulation of two-dimensional shear fracture based on virtual multidimemsional internal bonds, Int J Rock Mech Min Sci, doi: 10, 1016.