DOI QR코드

DOI QR Code

Mixture-Proportioning Model for Low-CO2 Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials

혼화재 종류 및 치환율을 고려한 저탄소 콘크리트 배합설계 모델

  • Jung, Yeon-Back (Department of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Department of Plant.Architectural Engineering, Kyonggi University)
  • 정연백 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Received : 2015.03.02
  • Accepted : 2015.05.11
  • Published : 2015.08.30

Abstract

The objective of this study is to establish an rational mixture-proportioning procedure for low-$CO_2$ concrete using supplementary cementitious materials (SCMs) achieving the targeted $CO_2$ reduction ratio as well as the conventional requirements such as initial slump, air content, and 28-day compressive strength of concrete. To evaluate the effect of SCM level on the $CO_2$ emission and compressive strength of concrete, a total of 12537 data sets were compiled from the available literature and ready-mixed concrete plants. The amount of $CO_2$ emission of concrete was assessed under the system boundary from cradle to concrete production stage at a ready-mixed concrete plant. Based on regression analysis using the established database, simple equations were proposed to determine the mixture proportions of concrete such as the type and level of SCMs, water-to-binder ratio, and fine aggregate-to-total aggregate ratio. Furthermore, the $CO_2$ emissions for a given concrete mixture can be straightforwardly calculated using the proposed equations. Overall, the developed mixture-proportioning procedure is practically useful for determining the initial mixture proportions of low-$CO_2$ concrete in the ready-mixed concrete field.

이 연구의 목적은 다양한 혼화재를 기반으로 목표 $CO_2$ 저감율 뿐만 아니라 콘크리트 초기 슬럼프, 공기량 및 28일 압축강도와 같은 종래의 요구 사항을 만족하는 $CO_2$ 저감 콘크리트의 합리적인 배합 설계 절차를 확립하는 것이다. $CO_2$ 배출과 콘크리트의 압축강도에 혼화재가 미치는 영향을 평가하기 위해, 실내 배합 및 레미콘 공장 데이터(전체 12537 배합표)를 분석하였다. 콘크리트의 배합에 따른 $CO_2$ 배출량 평가를 위해 고려된 시스템 경계는 재료 채취 및 가공에서부터 레미콘 공장에서 콘크리트 생산단계까지이다. 구축된 12537 콘크리트 배합 데이터를 사용한 비선형 회귀 분석을 통해 혼화재의 종류 및 치환율, W/B, S/a와 같은 콘크리트 배합 설계를 결정할 수 있는 간단한 모델식을 제시하였다. 또한, 주어진 콘크리트 배합에 대한 $CO_2$ 배출량은 제안된 모델식을 이용하여 직접 계산 될 수 있다. 결국, 개발된 배합 설계 절차는 레미콘 분야에서 $CO_2$ 저감 콘크리트의 초기배합표를 결정하는데 효율적으로 이용될 수 있다.

Keywords

References

  1. Gartner, E., "Industrially Interesting Approaches to "Low-$CO_2$" Cements", Cement and Concrete Research, Vol.34, 2004, pp.1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  2. Yang, K. H., Seo, E. A., Jung, Y. B., and Tae, S. H., "Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete", Journal of the Korea Concrete Institute, Vol.26, No.1, 2014, pp.13-21. https://doi.org/10.4334/JKCI.2014.26.1.013
  3. Jung, Y. B., Yang, K. H., and Choi, D. U., "Influence of Fly Ash on Life-Cycle Environmental Impact of Concrete", Journal of the Korea Institute of Building Construction, Vol.14, No.6, 2014, pp.515-522. https://doi.org/10.5345/JKIBC.2014.14.6.515
  4. Yang, K. H. and Moon, J. H., "Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing $CO_2$ Emission of Concrete", Journal of the Korea Concrete Institute, Vol.24, No.5, 2012, pp.597-604. https://doi.org/10.4334/JKCI.2012.24.5.597
  5. Flower, D. J. M. and Sanjayan, J. G., "Green House Gas Emissions due to Concrete Manufacture", The International Journal of Life Cycle Assessment, Vol.12, No.5, 2007, pp. 282-288. https://doi.org/10.1007/s11367-007-0327-3
  6. Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., and Marshall, R., "Improving the $CO_2$ Performance of Cement, Part I: Utilizing Life-Cycle Assessment and Key Performance Indicators to Assess Development within the Cement Industry", Journal of Cleaner Production, 2014. DOI:10.1065/lca2007.05.327.
  7. ISO 13315-2, Environmental Management for Concrete and Concrete Structures-Part 2: System Boundary and Inventory Data, International Organization for Standardization, Geneva, Switzerland, 2014, p.28.
  8. Kim, T. H. and Tea, S. H., "A Study on the Development of an Evaluation System of $CO_2$ Emission in the Production of Concrete", Journal of the Korea Concrete Institute, Vol.22, No.6, 2010, pp.787-796. https://doi.org/10.4334/JKCI.2010.22.6.787
  9. Yang, K. H., Jung, Y. B., Cho, M. S., and Tae, S. H., "Effect of Supplementary Cementitious Materials on Reduction of $CO_2$ Emissions from Concrete," Jounral of Cleaner Production, 2014. DOI:10.1016/j.jclepro.2014.03.01.8.
  10. Yang, K. H., "Development of Concrete Mixture Proportioning Approach for Reducing $CO_2$ Emissions," Technical Report, Kyonggi University, 2014.
  11. ACI Committee 318-11, Building code requirements for structural concrete and commentary, American Concrete Institute, 2008.

Cited by

  1. Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand vol.28, pp.4, 2016, https://doi.org/10.4334/JKCI.2016.28.4.427
  2. Evaluation of the Carbon Dioxide Uptake of Slag-Blended Concrete Structures, Considering the Effect of Carbonation vol.8, pp.4, 2016, https://doi.org/10.3390/su8040312