DOI QR코드

DOI QR Code

Magnetic Flux Leakage Method based Local Fault Detection for Inspection of Wire Rope

승강기 와이어로프 진단을 위한 누설자속기법 기반 국부손상 진단

  • Kim, Ju-Won (Department of Convergence Engineering for Future City, SungKyunKwan Univ.) ;
  • Park, Ju-Young (Department of Civil & Environmental System Engineering, SungKyunKwan Univ.) ;
  • Park, Seunghee (School of Architectural, Civil & Environmental Engineering, SungKyunKwan Univ.)
  • 김주원 (성균관대학교 미래도시융합공학과) ;
  • 박주영 (성균관대학교 건설환경시스템공학과) ;
  • 박승희 (성균관대학교 건축토목공학부)
  • Received : 2015.07.07
  • Accepted : 2015.07.20
  • Published : 2015.08.28

Abstract

In this study, Magnetic Flux Leakage(MFL)-based inspection system was applied to detect the local fault of wire rope. To verify the feasibility of the proposed damage detection technique, an 4-channel MFL sensor head prototype was designed and fabricated. A wire rope with several types of cross-sectional damages were fabricated and scanned by the MFL sensor head to measure the magnetic flux density of the wire rope specimen. To interpret the condition of the wire rope, magnetic flux signals were used to determine the locations of the flaws. To improve the resolution of signal, the instantaneous variation value of magnetic flux was utilized. Measured signals from the damaged specimen were compared with thresholds set for objective decision making. Finally, the results were compared with information on actual inflicted damages to confirm the accuracy and effectiveness of the proposed cable monitoring method.

본 연구에서는 와이어로프의 국부손상 검색을 위해 누설자속기법을 적용하였다. 와이어로프 구조물에 적용하기 위해 리프트오프의 발생을 최소화한 4채널 누설자속 센서헤드를 제작하였고, 이를 사용하여 와이어로프의 국부손상 검색실험을 수행하였다. 국부손상 검색실험을 위해 와이어로프를 준비하였고, 다양한 원주방향을 가지는 부분 단선 손상들을 발생시켰다. 제작된 자속누설 센서헤드를 이용하여 와이어로프 시편의 자속신호를 스캔하였고, 노이즈의 영향을 최소화하고 자속신호의 해상도를 향상시키고자 자속 신호를 미분하여 순간변화량을 손상 검색에 활용하였다. 객관적인 손상 판단을 위해 각 채널에서 계측된 자속신호를 GEV분포를 이용해 설정된 임계값과 비교하였다. 최종적으로 임계값을 초과한 부분의 길이방향 및 원주 방향 위치를 실제 손상과 비교함으로써 본 기법의 국부손상 검색 가능성을 살펴보았다.

Keywords

References

  1. Atherton, D.L. (1989) Magnetic Inspection in Key to Ensuring Safe Pipelines, Oil & Gas J., 87(32).
  2. Coktepe, M. (2011) Non-destructive Crack Detection by Capturing Local Flux Leakage Field, Sensors & Actuator A-Physics, 91, pp.70-72.
  3. Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values, Springer, Berlin Germany.
  4. Jun, J., Choi, M., Lee, J., Seo, J., Shin, K. (2011) Nondestructive Testing of Express Train Wheel using the Linearly Integrated Hall Sensors Array on a Curved Surface, NDT & E Int., 44(5), pp.449-455. https://doi.org/10.1016/j.ndteint.2011.04.005
  5. Kang, D.H., Kim, J.W., Park, S.Y., Park, S.H. (2014) Non-contact Local Fault Detection of Railroad Track using MFL Technology, J. Korean Soc. Hazard Mitig., 14(5), pp.275-282. https://doi.org/10.9798/KOSHAM.2014.14.5.275
  6. Kim, J.W., Choi, J.S., Lee, E.C., Park, S.H. (2014) Field Application of a Cable NDT System for Cable-Stayed Bridge using MFL Sensors Integrated Climbing Robot, J. Korean Soc. Nondestruct. Test., 34(1), pp.60-67. https://doi.org/10.7779/JKSNT.2014.34.1.60
  7. Kim, T.W., Rho, Y.W., Choi, D.H. (2009) Performance Comparison of Pipeline Defects' Length Estimation Using MFL Signals, J. Korean Soc. Nondestruct. Test., 29(2), pp.108-113.
  8. Lee, J., Hwang, J., Jun, J., Choi, S. (2008) Nondestructive Testing and Crack Evaluation of Ferromagnetic Material by using the Linearly Integrated Hall Sensor Array, J. Mech. Sci. & Tech., 22, pp.2310-2317. https://doi.org/10.1007/s12206-008-0908-5
  9. Lenz, J.E. (1990) A Review of Magnetic Sensors, Proc. IEEE, 78(6), pp.973-989. https://doi.org/10.1109/5.56910
  10. Mandache, C., Shiari, B., Clapham, L. (2005) Defect Separation Considerations in Magnetic Flux Leakage Inspection, Insight, 47(5), pp.289-293. https://doi.org/10.1784/insi.47.5.289.65057
  11. Mandal, K., Dufour, D., Krause, T.W., Atherton, D.L. (1997) Investigations of Magnetic Flux Leakage and Magnetic Barkhausen Noise Signals from Pipeline, J. Phy. D: Appl. Phy., 30(6), pp.962-973. https://doi.org/10.1088/0022-3727/30/6/009
  12. Park, H.W., Ahn, B.Y., Lee, S.S., Kim, J.W. (2007) Development of Magnetic Sensor for Measurement of the Cable Tension of Large Scale Bridge, J. Korean Soc. Nondestruct. Test., 27(4), pp.339-344.
  13. Park, S., Kim, J.-W., Lee, C., Lee, J.-J. (2014) Magnetic Flux Leakage Sensing-Based Steel Cable NDE Technique, Shock & Vib., 2014, ID929341.
  14. Park, S.H., Kim, J.W., Lee, C.G., Lee, J.J., Gil, H.B. (2012) Local Fault Detection Technique for Steel Cable using Multi-ChannelMagnetic Flux Leakage Senso, J. Comput. Struct. Eng. Inst. Korea, 25(4), pp.287-292. https://doi.org/10.7734/COSEIK.2012.25.4.287
  15. Ramsden, E. (2006) Hall-effect Sensors: Theory and Applications, Newnes, Oxford
  16. Son, D.R. (1997) The Principles and Applications of Magnetic Sensor, J. Korean Magn. Soc., 7(6), pp.334-339.
  17. Sumitro, S., Jarosevic, A., Wang, M.L. (2002) Elasto-magnetic Sensor Utilization on Steel Cable Stress Measurement, Proc. 1st fib Congress, pp.79-86.
  18. Wang, M.L., Wang, G., Zhao, Y. (2005) Sensing Issues in Civil Structural Health Monitoring, Springer, Dordrecht, p.524.
  19. Weischedel, H.R. (1985) The Inspection of Wire Ropes in Service: A Critical Review, Mater. Eval., 43(13), pp.1592-1605.
  20. Weischedel, H.R., Chaplin, C.R. (1991) Inspection of Wire Ropes for Offshore Applications, Mater. Eval., 49(3), pp.362-367.

Cited by

  1. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing vol.16, pp.9, 2016, https://doi.org/10.3390/s16091366
  2. Discrimination method of wire rope fault signal based on Holzer sensor for multi array weak magnetic detection pp.1573-7543, 2018, https://doi.org/10.1007/s10586-018-2440-4