DOI QR코드

DOI QR Code

Uncertainties Influencing the Collapse Capacity of Steel Moment-Resisting Frames

철골모멘트 골조의 붕괴성능에 영향을 미치는 불확실성 분석

  • 신동현 (서울시립대학교 건축공학과) ;
  • 김형준 (서울시립대학교 건축공학과)
  • Received : 2015.06.11
  • Accepted : 2015.07.18
  • Published : 2015.08.28

Abstract

In order to exactly evaluate the seismic collapse capacity of a structure, probabilistic approach is required by considering uncertainties related to its structural properties and ground motion. Regardless of the types of uncertainties, they influence on the seismic response of a structures and their effects are required to be estimated. An incremental dynamic analysis(IDA) is useful to investigate uncertainty-propagation due to ground motion. In this study, a 3-story steel moment-resisting frame is selected for a prototype frame and analyzed using the IDA. The uncertainty-propagation is assessed with categorized parameters representing epistemic uncertainties, such as the seismic weight, the inherent damping, the yield strength, and the elastic modulus. To do this, the influence of the uncertainty-propagation to the seismic collapse capacity of the prototype frame is probabilistically evaluated using the incremental dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. Of various parameters related to epistemic uncertainty-propagation, the inherent damping is investigated to be the most influential parameter on the seismic collapse capacity of the prototype frame.

구조물의 붕괴성능을 정확하게 평가하기 위해서는 구조물과 관련된 구조부재 및 지반운동의 불확실성을 고려한 확률적 접근방식이 요구된다. 불확실성의 종류에 상관없이 불확실성은 구조물의 응답에 영향을 미치게 되는데, 구조물의 성능목표를 설정함에 있어 이러한 불확실성 전파를 예측할 필요가 있다. 최근 들어, 구조물의 붕괴성능을 평가하는 방법으로 사용되고 있는 증분동적해석은 지반운동과 관련된 임의적 불확실성을 해석과정에서 고려할 수 있다는 장점이 있으나, 확률론적 평가를 위한 또 다른 중요 요인인 인식론적 불확실성을 직접적으로 평가할 수 없다는 제한사항이 있다. 본 연구에서는 철골모멘트골조를 표본 건물로 선정하여 인식론적 불확실 요인으로 정의한 구조물의 고유감쇠, 지진중량, 구조부재의 항복강도 및 탄성계수가 구조물의 붕괴성능에 미치는 영향을 확률적으로 평가하였다. 이를 위하여 라틴 방격 추출법을 사용한 몬테카를로 시뮬레이션을 통해 증분동적해석을 수행하여 구조시스템 붕괴성능의 변동성을 정량적으로 예측하였다. 해석결과, 붕괴성능의 변동성에 인식론적 불확실성을 대표하는 변수 중에서 구조물 고유감쇠의 영향이 가장 두드러지는 것으로 나타났다.

Keywords

References

  1. ASCE/SEI (2010) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineering, p.608.
  2. Carr, A.J. (2009) Ruaumoko Manual, User Manual for the 2-Dimensional Version : Ruaumoko 2D Vol.2, University of Canterbury, New Zealand.
  3. Chryssanthopoulos, M.K., Dymiotis, C., Kappos, A.J. (2000) Probabilistic Evaluation of behavior Factors in EC8-Designed R/C Frames, Eng. Struct., 22, pp.1028-1041. https://doi.org/10.1016/S0141-0296(99)00026-7
  4. Ellingwood, B., Galambos, T.V., MacGregor, J.G. (1980) Development of a Probability-based Load Criterion for American National Standard A58, Washington, D.C.
  5. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Federal Emergency Management Agency, Washington, D.C., p.518.
  6. Grant, L.H., Mirza, S.A., MacGregor, J.D. (1978) Monte Carlo Study of Strength of Concrete Columns, ACI J., 75(8), pp.348-358.
  7. Iman, R.L., Conover, W.J. (1982) A Distribution-free Approach to Inducing Rank Correlation among Input Variables, Communication in Statistics Part B: Simul. & Comput., 11(3), pp. 311-334. https://doi.org/10.1080/03610918208812265
  8. Jun, S., Shin, D.H., Kim, H.J. (2014) Annual Loss Probability Estimation of Steel Moment-Resisting Frames using Seismic Fragility Analysis, J. Comput. Struct. Eng. Inst. Korea, 27(6), pp. 517-524. https://doi.org/10.7734/COSEIK.2014.27.6.517
  9. Kim, J.K., Han, S.H. (2013) Sensitivity Analysis for Seismic Response of Reinforced Concrete Staggered Wall Structures, Mag. Conc. Res., 65(22), pp.1348-1359. https://doi.org/10.1680/macr.13.00153
  10. Lee, S.W., Lee, W.H., Kim, H.J. (2014) Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses, J. Comput. Struct. Eng. Inst. Korea, 27(6), pp. 509-516. https://doi.org/10.7734/COSEIK.2014.27.6.509
  11. Lee, T.-H., Mosalam, K.M. (2005) Seismic Demand Sensitivity of Reinforced Concrete Shear-wall Building using FOSM Method, Earthq. Eng. & Struct.l Dyn., 34(14), pp.1719-1736. https://doi.org/10.1002/eqe.506
  12. PEER (2006) PEER NGA Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, U.S.A., Available at : http://peer.berkeley.edu/nga/.
  13. Porter, K.A., Beck, J.L., Shaikhutdinov, R.V. (2002) Sensitivity of Building Loss Estimates to Major Uncertain Variables, Earthq. Spectra, 18(4), pp.719-743. https://doi.org/10.1193/1.1516201
  14. Ramirez, O.M., Constantinou, M.C., Kircher, C.A., Whittaker, A.S., Johnson, M.W., Gomez, J.D., Chrysostomou, C.Z. (2000) Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive Energy Dissipation Systems, Report No. MCEER 00-0010, Revision 1, Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, N.Y., USA.
  15. Shin, D.H., Kim, H.J. (2014) Probabilistic Assessment of Structural Seismic Performance Influenced by the Characteristics of Hysteretic Energy Dissipating Devices, Int. J. Steel Struct., 14(4), pp.697-710. https://doi.org/10.1007/s13296-014-1202-2
  16. Song, J.K. (2004) The Study on Evaluating Seismic Performance by Probabilistic Methodology and Deterministic Methodology, Master thesis, University of Seoul, p.82.
  17. Vamvatsikos, D., Cornell, C.A. (2002) Incremental Dynamic Analysis, Earthq. Eng. & Struct. Dyn., 31(3), pp.491-514. https://doi.org/10.1002/eqe.141