Acknowledgement
Supported by : 정보통신기술진흥센터, 한국연구재단
References
- M. Collins, B. Roark, "Incremental Parsing with the Perceptron Algorithm," Proc. of the Association for Computational Linguistics 2004, pp. 111-118, 2004.
- L. Huang, K. Sagae, "Dynamic Programming for Linear-Time Incremental Parsing," Proc. of the Association for Computational Linguistics 2010, pp. 1077-1086, 2010.
- X. Zheng, H. Chen, T. Xu, "Deep Learning for Chinese Word Segmentation," Proc. of the Empirical Methods in Natural Language Processing 2013, pp. 647-657, 2013.
- R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank," Proc. of the Empirical Methods in Natural Language Processing 2013, pp. 1631-1642, 2013.
- J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, J. Makhoul, "Fast and Robust Neural Network Joing Models for Statistical Machine Translation," Proc. of the Association for Computational Linguistics 2014, pp. 1370-1380, 2014.
- T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, "Recurrent Neural Network based Language Model," Proc. of the INTERSPEECH 2010, pp. 1045-1048, 2010.
- D. Chen, C. D. Manning, "A Fast and Accurate Dependency Parser using Neural Networks," Proc. of the Empirical Methods in Natural Language Processing 2014, pp. 740-750, 2014.
- C. Lee, J. Kim, J. Kim, "Korean Dependency Parsing using Deep Learning," Proc. of the 26th Annual Conference on Human and Cognitive Lanugage Technology, pp. 87-91, 2014. (In Korean)
- J. Li, J. Lee, "Morpheme-based Korean Dependency Parsing with Deep Neural Network," Proc. of the 41st KIISE Winter Conference, pp. 432-434, 2014.
- B. Bohnet, "Very High Accuracy and Fast Dependency Parsing is not a Contradiction," Proc. of the 23rd International Conference on Computational Liguistics 2010, pp. 89-97, 2010.
- D. E. Rumelhart, G. E. Hinton, R. J. Williams, "Learning Internal Representations by Error Propagation," Nature, Vol. 323, No. 9, pp. 533-536, Oct. 1986. https://doi.org/10.1038/323533a0
- Y. Bengio, R. Ducharme, P. Vincent, C. Janvin, "A Neural Probabilistic Language Model," The Journal of Machine Learning Research, Vol. 3, pp. 1137-1155, Mar. 2003.
- G. B. Orr, K-R. Muller, Neural Networks: Tricks of the trade, pp. 9-50, Springer-Verlag, Berlin Heidelberg, 1988.
- S. Hochreiter, J. Schmidhuber, "Long Short-Term Memory," Neural Computation, Vol. 9, No. 8, pp. 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- J. Yoon, K. Choi, "Study on KAIST Corpus," In CS-TR-99-139 KAIST CS, pp. 285-288, 1999.
- F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, Y. Bengio, "Theano: New Features and Speed Improvements," Proc. of Advances in Neural Information Processing Systems 2012 Deep Learning Workshop, 2012.
- J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde- Farley, Y. Bengio, "Theano: A CPU and GPU Math Compiler in Python," Proc. of the Python for Scientific Computing Conference (SciPy) 2010, pp. 3-9, 2010.