• Title/Summary/Keyword: Transition-based Dependency Parsing

Search Result 7, Processing Time 0.018 seconds

Proper Noun Embedding Model for the Korean Dependency Parsing

  • Nam, Gyu-Hyeon;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • Dependency parsing is a decision problem of the syntactic relation between words in a sentence. Recently, deep learning models are used for dependency parsing based on the word representations in a continuous vector space. However, it causes a mislabeled tagging problem for the proper nouns that rarely appear in the training corpus because it is difficult to express out-of-vocabulary (OOV) words in a continuous vector space. To solve the OOV problem in dependency parsing, we explored the proper noun embedding method according to the embedding unit. Before representing words in a continuous vector space, we replace the proper nouns with a special token and train them for the contextual features by using the multi-layer bidirectional LSTM. Two models of the syllable-based and morpheme-based unit are proposed for proper noun embedding and the performance of the dependency parsing is more improved in the ensemble model than each syllable and morpheme embedding model. The experimental results showed that our ensemble model improved 1.69%p in UAS and 2.17%p in LAS than the same arc-eager approach-based Malt parser.

Korean Transition-based Dependency Parsing with Recurrent Neural Network (순환 신경망을 이용한 전이 기반 한국어 의존 구문 분석)

  • Li, Jianri;Lee, Jong-Hyeok
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.567-571
    • /
    • 2015
  • Transition-based dependency parsing requires much time and efforts to design and select features from a very large number of possible combinations. Recent studies have successfully applied Multi-Layer Perceptrons (MLP) to find solutions to this problem and to reduce the data sparseness. However, most of these methods have adopted greedy search and can only consider a limited amount of information from the context window. In this study, we use a Recurrent Neural Network to handle long dependencies between sub dependency trees of current state and current transition action. The results indicate that our method provided a higher accuracy (UAS) than an MLP based model.

A Transition based Joint Model for Korean POS Tagging & Dependency Parsing using Deep Learning (딥러닝을 이용한 전이 기반 한국어 품사 태깅 & 의존 파싱 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.97-102
    • /
    • 2017
  • 형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.

  • PDF

A Transition based Joint Model for Korean POS Tagging & Dependency Parsing using Deep Learning (딥러닝을 이용한 전이 기반 한국어 품사 태깅 & 의존 파싱 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.97-102
    • /
    • 2017
  • 형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.

  • PDF

Transition-Based Korean Dependency Parsing using Bidirectional LSTM (Bidirectional LSTM을 이용한 전이기반 한국어 의존 구문분석)

  • Ha, Tae-Bin;Lee, Tae-Hyeon;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.527-529
    • /
    • 2018
  • 초기 자연언어처리에 FNN(Feedforward Neural Network)을 적용한 연구들에 비해 LSTM(Long Short-Term Memory)은 현재 시점의 정보뿐만 아니라 이전 시점의 정보를 담고 있어 문장을 이루는 어절들, 어절을 이루는 형태소 등 순차적인(sequential) 데이터를 처리하는데 좋은 성능을 보인다. 본 논문에서는 스택과 버퍼에 있는 어절을 양방향 LSTM encoding을 이용한 representation으로 표현하여 전이기반 의존구문분석에 적용하여 현재 UAS 89.4%의 정확도를 보였고, 자질 추가 및 정제작업을 통해 성능이 개선될 것으로 보인다.

  • PDF

Neural transition-based joint models for dependency Parsing and semantic role labeling of Korean (뉴럴 전이 기반 한국어 의존 파싱 & 의미역 결정 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.343-346
    • /
    • 2018
  • 기존의 의미역 결정은 먼저 구문 분석을 수행한 후에 해당 구문 분석 결과를 이용해 의미역 결정 테스크에 적용하는 파이프라인 방식으로 진행한다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 구문 파싱과 의미 파싱에 대해 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱과 의미역 파싱을 동시에 진행하도록 전이 액션을 확장한 의존 파싱 & 의미역 결정 통합 모델을 제안하고 실험 결과, Korean Prop Bank 의미역 결정 데이터 셋에서 파이프라인 방식 전이 기반 방식을 사용한 모델보다 논항 인식 및 분류(AIC) 성능에서 F1 기준 0.14% 높은 결과을 보인다.

  • PDF

Korean Dependency Parsing Model based on Transition System using Head Final Constraint (지배소 후위 제약을 적용한 트랜지션 시스템 기반 한국어 의존 파싱 모델)

  • Lim, Joon-Ho;Yoon, Yeo-Chan;Bae, Yongjin;Im, Su-Jong;Kim, Hyunki;Lee, Kyu-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.81-86
    • /
    • 2014
  • 한국어 의존 파싱은 문장 내 단어의 지배소를 찾음으로써 문장의 구조적 중의성을 해소하는 작업이다. 지배소 후위 원칙은 단어의 지배소는 자기 자신보다 뒤에 위치한다는 원리로, 한국어 구문분석을 위하여 널리 사용되는 원리이다. 본 연구에서는 한국어 지배소 후위 원리를 의존 파싱을 위한 트랜지션 시스템의 제약 조건으로 적용하여 2가지 트랜지션 시스템을 제안한다. 제안 모델은 기존 트랜지션 시스템 중 널리 사용되는 arc-standard와 arc-eager 알고리즘에 지배소 후위 제약을 적용한 포워드(forward) 기반 트랜지션 시스템과, 트랜지션 시스템의 단점인 에러 전파(error propagation)를 완화시키기 위하여 arc-eager 알고리즘의 lazy-reduce 방식을 적용한 백워드(backward) 기반 트랜지션 시스템이다. 실험은 세종 구구조 말뭉치를 의존구조로 변환하여 실험하였고, 실험 결과 백워드 기반 트랜지션 시스템이 포워드 방식보다 우수한 성능을 보였다. 기존 연구와의 비교를 위하여 기존 연구를 조사하였지만 세부 실험 환경이 서로 달라서 직접적인 비교는 어려웠다. 제안하는 시스템의 최고 성능은 UAS 92.85%, LAS 90.82% 이다.

  • PDF